Journal of Industrial and Engineering Chemistry, Vol.84, 196-201, April, 2020
Single photomask lithography for shape modulation of micropatterns
E-mail:,
Photolithography has been used to fabricate various micropatterns; however, recent efforts have focused on the scaling-down process to reduce the feature sizes of the desired patterns and not redefining existing micropatterns. Here, we describe single-mask photolithography method for the shape modulation of designed patterns with a single-mask that utilizes the intrinsic properties of a monolithic photoresist. Our novel approach can achieve various micropatterns with different open areas by adjusting a few fabrication parameters. To create the modulated micropatterns, the material and physical parameters (e.g., soft-bake temperature and exposure dose) were altered and successfully produced modulated shapes. This approach can produce well-controlled micropatterns with desired shapes over a large area with high throughput. Furthermore, our new approach enables access to numerous varieties of micropatterns and can be expandable to two dimensional (2D) and thre dimensional (3D) multiscale architectures.
Keywords:Single photomask lithography;Shape modulation;Single photomask;Exposure dose;Soft-bake temperature
- Paulsen KS, Carlo DD, Chung AJ, Nat. Commun., 6, 6976 (2015)
- Lee SH, Kwon OS, Song HS, Park SJ, Sung JH, Jang J, Park TH, Biomaterials, 33, 1722 (2012)
- Shim TS, Yang SM, Kim SH, Nat. Commun., 6, 6584 (2015)
- Hippler M, Blasco E, Qu J, Tanaka M, Barner-Kowollik C, Wegener M, Bastmeyer M, Nat. Commun., 10, 2232 (2019)
- Whitesides GM, Ostuni E, Takayama S, Jiang X, Ingber DE, Annu. Rev. Biomed. Eng., 3, 335 (2001)
- Striccoli M, Science, 357, 33 (2017)
- Wagner C, Harned N, Nat. Photonics, 4, 24 (2010)
- Paul KE, Breen TL, Hadzik T, Whitesides GM, J. Vac. Sci. Technol., 23, 918 (2005)
- Weichelt T, Vogler U, Stuerzebecher L, Voelkel R, Zeitner UD, Optic. Exp., 22, 16310 (2014)
- Dong J, Liu J, Kang G, Xie J, Wang Y, Sci. Rep., 4, 5618 (2014)
- Liau CY, Lee CH, Kang JT, Yoon SW, Loo C, Seow B, Sheu WB, Semicond. Sci. Technol., 20, 693 (2005)
- Lee SH, Park SM, Kim BN, Rho WY, Kwon OS, Jun BH, Biosens. Bioelectron., 141, 111448 (2019)
- Lee SH, Jung BH, J. Ind. Eng. Chem., 71, 65 (2019)
- Park SJ, Kwon OS, Lee SH, Song HS, Park TH, Jang J, Nano Lett., 12, 5082 (2012)
- Kang M, Byun JH, Na S, Jeon NL, RSC Adv., 7, 13353 (2017)
- Kim M, Ha D, Kim T, Nat. Commun., 6, 6247 (2015)
- Jin CM, Lee W, Kim D, Kang T, Choi I, Small, 14, 180305 (2018)
- Lee SH, Rho WY, Park SJ, Kim J, Kwon OS, Jun BH, Sci. Rep., 8, 16763 (2018)
- Paulsen KS, Deng Y, Chung AJ, Adv. Sci., 5, 180025 (2018)
- Rose MA, Bowen JJ, Morin SA, Chem. Phys. Chem., 20, 909 (2019)
- Campo A, Greiner C, J. Micromech. Microeng., 17, 81 (2007)
- Kelly RT, Sheen AM, Jambovane S, RSC Adv., 3, 20138 (2013)
- Mosher L, Waits CM, Morgan B, Ghodssi R, J. Microelectromech. Syst., 18, 308 (2009)
- Anhoj TA, Jorgensen AM, Zauner DA, Hubner J, J. Micromech. Microeng., 16, 1819 (2006)
- Ho WK, Tay A, Lee LL, Schaper CD, Control. Eng. Pract., 12, 881 (2004)