Journal of Industrial and Engineering Chemistry, Vol.84, 366-374, April, 2020
Investigation on millimeter-scale W1/O/W2 compound droplets generation in a co-flowing device with one-step structure
E-mail:
Millimeter-scale W1/O/W2 compound droplets generation in a co-flowing microfluidic device with one-step structure was symmetrically observed through experiments, and the formation process is distinguished according to the variation law of thread tip velocity. Specially, under a wide range of operation conditions, W1/O/W2 compound droplets form accompanying with the generation of oil phase droplet. The formation ratio of compound droplets to oil phase droplet always depends on the outer phase Capillary number, Caw2, and the flow rate ratio, R, of middle to inner phases, and thus the flow pattern diagram is obtained. Further the influences of all phases flow rates, outer phase viscosity as well as the interfacial tension on the formation period and geometric sizes are extensively studied. Finally, a prediction correlation for dimensionless inner and outer diameters with several dimensionless numbers is also obtained. The results could provide an experimental basis for controllably preparing monodisperse compound droplets with millimeter-scale.
Keywords:W1/O/W2 compound droplets;Millimeter-scale;Co-flowing microfluidic device;One-step structure;Flow mechanisms
- Wan J, Polymers, 2, 1084 (2012)
- Taly V, Kelly BT, Griffiths AD, Chembiochem, 3, 263 (2007)
- Shum HC, Bandyopadhyay A, Bose S, Weitz D, Chem. Mater., 22, 5548 (2009)
- Wang J, Cheng Y, Yu Y, Chen Z, Zhao Y, Gu Z, ACS Appl. Mater. Inter., 49, 27035 (2015)
- Khademhosseini A, May MH, Sefton MV, Tissue Eng., 11-12, 1797 (2005)
- Muschiolik G, Dickinson E, Compr. Rev. Food Sci. Food Saf., 16, 532 (2017)
- Lorenceau E, Utada AS, Link DR, Cristobal G, Joanicot M, Weitz DA, Langmuir, 21(20), 9183 (2005)
- Kim JW, Utada AS, Fernandez-Nieves A, Hu ZB, Weitz DA, Angew. Chem.-Int. Edit., 46, 1819 (2007)
- Perro A, Nicolet C, Angy J, Lecommandoux S, Le Meins JF, Colin A, Langmuir, 27(14), 9034 (2011)
- Lindl DJ, Amendt P, Berger LR, Phys. Plasmas, 2, 339 (2004)
- Cavailler C, Plasma Phys. Contr. Fusion, 12B, 389 (2005)
- Mcquillan BW, Nikroo A, Steinman DA, Fusion Sci. Technol., 31, 381 (1997)
- Mishra KK, Khardekar RK, Singh R, Pant HC, Pramana J. Phys., 59, 113 (2002)
- Pan DW, Huang WX, Chen Q, Chen SF, Zhang ZW, Liu MF, Li B, Fusion Sci. Technol., 73, 59 (2017)
- Shao T, Feng XL, Jin Y, Cheng Y, Chem. Eng. Sci., 104, 55 (2013)
- Chong DT, Liu XS, Ma HJ, Huang GY, Han YL, Cui XY, Yan JJ, Xu F, Microfluid. Nanofluid., 19, 1071 (2015)
- Okushima S, Nisisako T, Torii T, Higuchi T, Langmuir, 20(23), 9905 (2004)
- Nisisako T, Okushima S, Torii T, Soft Matter, 1, 23 (2005)
- Nurumbetov G, Ballard N, Bon SAF, Poly. Chem., 3, 1043 (2012)
- Abate AR, Thiele J, Weinhart M, Weitz DA, Lab Chip, 10, 1774 (2010)
- Utada AS, Lorenceau E, Link DR, Kaplan PD, Stone HA, Weitz DA, Science, 308, 537 (2005)
- Abate AR, Thiele J, Weitz DA, Lab Chip, 11, 253 (2011)
- Park JM, Anderson PD, Lab Chip, 12, 2672 (2012)
- Fu YH, Zhao SF, Bai L, Jin Y, Cheng Y, Chem. Eng. Sci., 146, 126 (2016)
- Vu TV, Homma S, Tryggvason G, Wells JC, Takakura H, Int. J. Multiphas. Flow, 49, 58 (2013)
- Nabavi SA, Vladisavljevic GT, Bandulasena MV, Arjmandi-Tash O, Manovic V, J. Colloid Interface Sci., 505, 315 (2017)
- Wu LY, Liu XD, Zhao YJ, Chen YP, Chem. Eng. Sci., 163, 56 (2017)
- Liu XD, Wu LY, Zhao YJ, Chen YP, Colloids Surf. A: Physicochem. Eng. Asp., 533, 87 (2017)
- Vladisavljevic GT, Shum HC, Weitz DA, Prog. Colloid Polym. Sci., 139, 115 (2012)
- Liu ZM, Du Y, Pang Y, Chin. J. Anal. Chem., 3, 324 (2018)
- Deng CJ, Wang HY, Huang WX, Chen SM, Colloids Surf. A: Physicochem. Eng. Asp., 553, 1 (2017)
- Anna SL, Annu. Rev. Fluid Mech., 48, 285 (2016)