- Previous Article
- Next Article
- Table of Contents
Korean Journal of Chemical Engineering, Vol.37, No.4, 577-582, April, 2020
Experimental investigation of charge transfer coefficient and exchange current density in standard fuel cell model for polymer electrolyte membrane fuel cells
E-mail:
Two representative parameters, exchange current density (j0) and charge transfer coefficient (α), in a standard fuel cell model of polymer electrolyte membrane fuel cells (PEMFCs) were experimentally investigated. The polarization characteristics and the corresponding electrochemical impedance spectra of the normal PEMFCs were measured and Tafel curves were calculated from them, where j0 and α were finally calculated. As a result, the calculated j0 was 0.11- 0.70 A/cm2, while the α was 0.056-0.023, depending on the operating temperature. Here, the j0 is extremely overestimated while α is underestimated as compared with those in literature. Although the reason for such difference is not clear, it is expected that it could affect the predicted performance by the model significantly if the fuel cell performance is improved highly in the future so the activation overvoltage corresponding to identical current is lowered.
Keywords:Polymer Electrolyte Membrane Fuel Cell;Charge Transfer Coefficient;Exchange Current Density;Fuel Cell Model;Electrochemical Impedance Spectroscopy
- Dicks A, Rand D, Fuel cell systems explained, Wiley, New York (2018).
- Winter M, Brodd RJ, Chem. Rev., 104(10), 4245 (2004)
- Dyer CK, J. Power Sources, 106(1-2), 31 (2002)
- Wee JH, Renew. Sust. Energ. Rev., 11(8), 1720 (2007)
- Wang Y, Chen KS, Mishler J, Cho SC, Adroher XC, Appl. Energy, 88(4), 981 (2011)
- van Biert L, Godjevac M, Visser K, Aravind PV, J. Power Sources, 327, 345 (2016)
- Hoogers G, Fuel cell technology handbook, CRC Press, Florida (2003).
- Yazar S, Kurtulbas E, Ortaboy S, Atun G, Shin S, Korean J. Chem. Eng., 36(7), 1184 (2019)
- Han IS, Park SK, Chung CB, Korean J. Chem. Eng., 33(11), 3121 (2016)
- Lee CS, Yi SC, Korean J. Chem. Eng., 21(6), 1153 (2004)
- Bernardi DM, Verbrugge MW, J. Electrochem. Soc., 139(9), 2477 (1992)
- Springer TE, Zawodzinski TA, Gottesfeld S, J. Electrochem. Soc., 138, 2334 (1991)
- O’Hayre R, Cha SW, Colella W, Prinz FB, Fuel cell fundamentals, Wiley, New York (2009).
- Nguyen PT, Berning T, Djilali N, J. Power Sources, 130(1-2), 149 (2004)
- Springer TE, J. Electrochem. Soc., 138(8), 2334 (1991)
- Bard AJ, Faulkner LR, Electrochemical methods: fundamentals and applications, Wiley, New York (2001).
- Parthasarathy A, Srinivasan S, Appleby AJ, Martin CR, J. Electroanal. Chem., 339(1-2), 101 (1992)
- Litster S, McLean G, J. Power Sources, 130(1-2), 61 (2004)
- Paganin VA, Ticianelli EA, Gonzalez ER, J. Appl. Electrochem., 26(3), 297 (1996)
- Qi YT, Huang B, Chuang KT, J. Power Sources, 150, 32 (2005)
- Jordan LR, Shukla AK, Behrsing T, Avery NR, Muddle BC, Forsyth M, J. Power Sources, 86(1-2), 250 (2000)
- Marr C, Li XG, J. Power Sources, 77(1), 17 (1999)
- Parthasarathy A, Srinivasan S, Appleby AJ, Martin CR, J. Electrochem. Soc., 139(9), 2530 (1992)
- Broka K, Ekdunge P, J. Appl. Electrochem., 27(3), 281 (1997)
- Springer TE, Zowodzinski TA, Gottesfeld S, J. Electrochem. Soc., 138(8), 2334 (1991)
- Um S, Wang CY, Chen CS, J. Electrochem. Soc., 147(12), 4485 (2000)
- Park T, Chang I, Jung JH, Lee HB, Ko SH, O'Hayre R, Yoo SJ, Cha SW, Energy, 134, 412 (2017)