화학공학소재연구정보센터
Clean Technology, Vol.26, No.1, 65-71, March, 2020
태양열 하이브리드 공정을 위한 유동층 입자들의 마모 및 열전달 특성 연구
Attrition and Heat Transfer Characteristics of Fluidized Bed Materials for a Solar Hybrid Process
E-mail:
초록
전기와 천연가스와 같이 안정적이며 신뢰할 수 있는 에너지를 현대 사회가 요구하기 때문에 재생에너지와 화석연료의 장점들을 모두 보유하고 있는 다양한 방식의 태양열 하이브리드 공정들이 세계 각국에서 개발되고 있다. 특히 고체 입자에 태양열을 저장하는 유동층 기반의 태양열 하이브리드 공정은 기존의 유동층 연소 및 가스화에 적용할 수 있을 것으로 기대받고 있다. 이에 본 연구에서는 ASTM D5757 반응기와 0.14 m의 직경과 2 m 높이의 유동층 반응기를 이용하여 태양열 하이브리드 공정의 유동층물질로서 검토되고 있는 실리콘 카바이드, 알루미나 입자들의 마모 및 열전달 특성을 고찰하였다. 특히 다양한 상업 유동층 반응기에서 유동층물질로 이용되는 모래와 비교하였다. 실리콘카바이드와 알루미나의 내마모성은 모래보다 우수하였으며 평균 열전달 계수도 125 ~ 152 W m-2K-1 범위를 가지는 것으로 고찰되었다.
Various solar hybrid energy conversion processes, which have both the advantages of renewable energy sources and fossil energy sources, have been developed in the world because stable and predictable energy supplies, such as electricity and natural gas, are necessary for modern societies. In particular, a solar hybrid energy conversion process based on a dual fluidized bed process concept has been expected as the promising solution for sustainable energy supply via thermochemical conversions, such as pyrolysis, combustion, gasification, and so on, because solar thermal energy could be captured and stored in fluidized bed materials. Therefore, the attrition and heat transfer characteristics of silicon carbide and alumina particles used for fluidized bed materials for the solar hybrid energy conversion process were studied in an ASTM D5757 reactor and a bubbling fluidized bed reactor with 0.14m diameter and 2m height. These characteristics of novel fluidized bed materials were compared with those of sand particles which have widely been used as a fluidized bed material in various commercial fluidized bed reactors. The attrition resistances of silicon carbide and alumina particles were higher than those of sand particles while the average values of heat transfer coefficient in the bubbling fluidized bed reactor were in the range of 125 ~ 152 W m-2K-1.
  1. Lee SH, News & Information for Chemical Engineers, 37, 200-206 (2019).
  2. Lee SH, Lee TH, Jeong SM, Lee JM, Renew. Energy, 138, 121 (2019)
  3. Gwak YR, Kim YB, Gwak IS, Lee SH, Fuel, 213, 115 (2018)
  4. BP, BP energy outlook 2019 edition, www.bp.com (2019).
  5. Mills S, Clean Energy, 2, 1 (2018)
  6. Almendros-Ibanez JA, Fernandez-Torrijos M, Diaz-Heras M, Belmonte JF, Sobrino C, Solar Energy, 192, 193 (2019)
  7. Lee SH, Lee JM, KEPCO J. Electric Power Energy, 2, 211 (2016)
  8. Verdolini E, Vona F, Popp D, Energy Policy, 116, 242 (2018)
  9. https://www.power-eng.com/2016/08/17/study-says-renewable-power-still-reliant-on-backup-from-natural-gas/ (accessed Aug. 2016).
  10. Ma Z, Mehos M, Glatzmaier G, Sakadjian BB, Energy Procedia, 69, 1349 (2015)
  11. Yoo HM, Um NI, Kim YJ, Cho YA, Shin SK, Kim KH, J. Korea Soc. Waste Mnang., Vol. 34, 776-783 (2017).
  12. Kim YB, Kang SY, Seo SB, Keel SI, Yun JH, Lee SH, Korean Chem. Eng. Res., 57(5), 687 (2019)
  13. Kook JW, Shin JH, Gwak IS, Lee SH, Appl. Chem. Eng., 26(2), 184 (2015)
  14. Park HC, Choi MK, Choi HS, J. Korea Soc. Waste Manag., 36, 601 (2019)
  15. Goransson K, Soderlind U, He J, Zhang W, Renew. Sust. Energ. Rev., 15, 482 (2011)
  16. Liu T, Liu Q, Lei J, Sui H, J. Clean Prod., 213, 1011 (2019)
  17. Kim YB, Kang SY, Seo SB, Keel SI, Yun JH, Lee SH, Korean Chem. Eng. Res., 57(5), 687 (2019)
  18. Lee SH, Yoon SJ, Choi YC, Kim JH, Lee JG, Korean Chem. Eng. Res., 44(6), 631 (2006)
  19. Kang Y, Kim YR, Ko MH, Seo YC, Jin GT, Son JE, Kim SD, Korean Chem. Eng. Res., 35, 282 (1997)
  20. Kang SH, Han KH, Jin GT, Kang Y, Korean Chem. Eng. Res., 40, 218 (2002)
  21. Hwang GJ, Lee BK, Choi MK, Choi HS, J. Korea Soc. Waste Manag., 35, 126 (2018)