화학공학소재연구정보센터
Macromolecular Research, Vol.28, No.3, 275-281, March, 2020
Spirobiindane-Based Poly(arylene ether sulfone) Ionomers for Alkaline Anion Exchange Membrane Fuel Cells
E-mail:,
In this study, spirobiindane-based poly(arylene ether sulfone)s with quaternary ammonium-functionalized side chains were synthesized as alkaline anion exchange membrane fuel cell (AEMFC) electrode binding materials. A series of novel AEMFC electrode ionomers with different main-chain structures were prepared. Three-dimensional spirobiindane structures were introduced to improve the gas permeability of the binding material. The ionomers were characterized by NMR and thermogravimetric analysis. Single-cell performance tests using the ionomers were also carried out. The ionomer sample with a spirobiindane unit in the polymer backbone and quaternary ammonium-functionalized hexyloxy side chain showed good potential for AEMFC applications. A single-cell using this ionomer as a binder exhibited a peak power density of 140 mW/cm2. The modification of main-chain is considered to be a suitable approach for the synthesis of AEMFC electrode ionomers.
  1. Sharaf OZ. Orhan MF, Renew. Sust. Energ. Rev., 32, 810 (2014)
  2. Dekel DR, J. Power Sources, 375, 158 (2018)
  3. Dang HS, Jannasch P, J. Mater. Chem. A, 4, 11924 (2016)
  4. Dang HS, Jannasch P, Macromolecules, 48(16), 5742 (2015)
  5. Liu L, Chu X, Liao J, Huang Y, Li Y, Ge Z, Hickner MA, Li N, Energy Environ. Sci., 11, 435 (2018)
  6. Dang HS, Weiber EA, Jannasch P, J. Mater. Chem. A, 3, 5280 (2015)
  7. Li L, Lin CX, Wang XQ, Yang Q, Zhang QG, Zhu AM, Liu QL, J. Membrane Sci., 553, 209 (2018)
  8. Lin CX, Huang XL, Guo D, Zhang QG, Zhu AM, Ye ML, Liu QL, J. Mater. Chem. A, 4, 13938 (2016)
  9. Gottesfeld S, Dekel DR, Page M, Bae C, Yan YS, Zelenay P, Kim YS, J. Power Sources, 375, 170 (2018)
  10. Arges CG, Zhang L, ACS Appl. Energy Mater., 1, 2991 (2018)
  11. Choi J, Kim MH, Han JY, Chae JE, Lee WH, Lee YM, Lee SY, Jang JH, Kim JY, Henkensmeier D, Yoo SJ, Sung YE, Kim HJ, J. Membr. Sci., 568, 67 (2018)
  12. Ishiwari F, Sato T, Yamazaki H, Kondo JN, Miyanishi S, Yamaguchi T, Fukushima T, J. Mater. Chem. A, 4, 17655 (2016)
  13. Cope AC, Bach RD, Org. Synth., 49, 39 (1969)
  14. Kwon Y, Lee SY, Hong S, Jang JH, Henkensmeier D, Yoo SJ, Kim HJ, Kim SH, Polym. Chem., 6, 233 (2015)
  15. Miyanishi S, Yamaguchi T, Phys. Chem. Chem. Phys., 18, 12009 (2016)
  16. Mohanty AD, Tignor SE, Krause JA, Choe YK, Bae C, Macromolecules, 49(9), 3361 (2016)
  17. Nunez SA, Capparelli C, Hickner MA, Chem. Mater., 28, 2589 (2016)
  18. Sun Z, Lin B, Yan F, ChemSusChem, 11, 58 (2018)
  19. Marino MG, Kreuer KD, ChemSusChem,, 8, 513 (2015)
  20. Edson JB, Macomber CS, Pivovar BS, Boncella JM, J. Membr. Sci., 399-400, 49 (2012)
  21. Amel A, Smedley SB, Dekel DR, Hickner MA, Ein-Eli Y, J. Electrochem. Soc., 162(9), F1047 (2015)
  22. Chen Y, Clemson University, All Theses (2017). (Retrieved from https://tigerprints.clemson.edu/all_theses/2722).
  23. Broido A, J. Polym. Sci. A, 7, 1761 (1969)
  24. Gao X, Yu H, Jia J, Hao J, Xie F, Chi J, Qin B, Fu L, Song W, Shao Z, RSC Adv., 7, 19153 (2017)