Polymer(Korea), Vol.44, No.2, 186-191, March, 2020
기계적 물성이 향상된 옥외용 에폭시 나노복합체의 특성
Characteristics of Epoxy Nanocomposites for Outdoor Use with Improved Mechanical Properties
E-mail:
초록
내후성이 우수한 지환형 에폭시 수지에 유연한 액상 실리콘 고무를 반응시키고 나노클레이를 분산시킨 후 산무수물 경화제와 반응촉진제를 첨가하여 경화시켰다. 경화된 에폭시 나노복합체의 열적, 기계적 물성 및 모폴로지를 TGA, DMA, UTM, Impact tester, SEM을 이용하여 조사하였다. 클레이 함량이 증가함에 따라 굴곡강도와 충격강도는 증가하였고 클레이 함량 2 phr일 때 최대값을 보였다. 미세구조를 관찰한 결과 충격강도의 증가는 나노복합체의 파단 시 거친 표면을 생성하여 충격에너지를 흡수하는 것에 기인하는 것으로 판단되었다. 이에 실리콘 고무로 개질된 지환형 에폭시 수지에 나노클레이를 소량 첨가함으로써 우수한 내후성 및 향상된 기계적 특성을 갖는 옥외용 에폭시 나노복합체를 제조할 수 있으리라 생각된다.
The cycloaliphatic epoxy resin with good weatherability was reacted with the flexible liquid silicone rubber and then dispersed the nano-clays. The mixture was cured with the anhydride hardener and the reaction accelerator. Thermal, mechanical properties, and morphology of the cured nanocomposites were investigated using TGA, DMA, UTM, Impact tester, and SEM. As the clay content increased, the flexural strength and impact strength increased and showed maximum values when the clay content was 2 phr. Observing the morphology, the increase in impact strength was thought to be due to the introduction of clay resulting in the absorption of impact energy by creating rough surfaces in fracture. It is believed that by adding a small amount of nano-clay to the silicone rubber modified cycloaliphatic epoxy resin, the epoxy nanocomposites for outdoor use with improved mechanical properties as well as excellent weatherability can be obtained.
Keywords:silicone rubber;cycloaliphatic epoxy;cycloaliphatic anhydride;weatherability;impact modified;nano-clay
- Panda H, Epoxy Resins Technology Handbook, 2nd ed., Asia Pacific Business Press Inc., Delhi, 2019.
- May CA, Editor, Epoxy Resins: Chemistry and Technology, 2nd ed., Marcel Dekker, Inc., New York, 2018.
- Yao W, Zhang Q, Qi F, Zhang JN, Liu K, Li JP, Chen WX, Du YP, Jin YC, Liang YR, Liu NL, Electrochim. Acta, 318, 302 (2019)
- Wu Z, Gao S, Chen L, Jiang D, Shao Q, Zhang B, Zhai Z, Wang C, Zhao M, Ma Y, Zhang X, Weng L, Zhang M, Guo Z, Macromol. Chem. Phys., 218, 170035 (2017)
- Zhou W, Zheng Y, Yang S, Li H, Wang B, Qiao S, IEEE T. Dielect. El. In., 23, 2942 (2016)
- Gu H, Ma C, Gu J, Guo J, Yan X, Huang J, Zhang Q, Guo Z, J. Mater. Chem. C, 4, 5890 (2016)
- Gu JW, Yang XT, Lv ZY, Li N, Liang CB, Zhang QY, Int. J. Heat Mass Transf., 92, 15 (2016)
- Gu J, Liang C, Zhao X, Gan B, Qiu H, Guo Y, Yang X, Zhang Q, Wang DY, Compos. Sci. Technol., 139, 83 (2017)
- Riaz S, Park SJ, Materials, 12, 1354 (2019)
- Horowitz H, Metzger G, Anal. Chem., 35, 1464 (1963)
- Doyle CD, Anal. Chem., 33, 77 (1961)
- Park SJ, Cho MS, Lee JR, Polym. Korea, 23(2), 305 (1999)
- Xie Y, Hill CAS, Xiao Z, Militz H, Mai C, Compos. Pt. A-Appl. Sci. Manuf., 41, 806 (2010)
- Sahoo SK, Mohanty S, Nayak SK, Prog. Org. Coat., 88, 263 (2015)
- Xidas PI, Triantafyllidis KS, Eur. P olym. J ., 46, 404 (2010)
- Gerard JF, Galy J, Pascult JP, Cukierman S, Halary JL, Polym. Eng. Sci., 31, 615 (1991)
- Unsworth J, Li Y, J. Appl. Polym. Sci., 46, 1375 (1992)
- Mbey JA, Hoppe S, Thomas F, Carbohydr. Polym., 88, 213 (2012)
- Tan SG, Chow WS, Polym.-Plast. Technol. Eng., 49, 1581 (2010)
- Wang R, Schuman TR, Express Polym. Lett., 7, 272 (2013)
- Ogura I, DIC Technical Review (in Japanese), 7, 1 (2001).
- Miyagawa H, Misra M, Drzal LT, Mohanty AK, Polymer, 46(2), 445 (2005)
- Park J, Jana SC, Polymer, 45(22), 7673 (2004)
- Greco A, Corcione CE, Strafella A, Maffezzoli A, J. Appl. Polym. Sci., 118(6), 3666 (2010)
- Noda N, Lee YH, Bur AJ, Prabhu VM, Snyder CR, Roth SC, McBrearty M, Polymer, 46(18), 7201 (2005)
- Lee SM, Polym. Korea, 44(2), 163 (2020)