화학공학소재연구정보센터
Polymer(Korea), Vol.44, No.2, 240-247, March, 2020
β-Cyclodxtrin을 피커링 유화제로 이용한 열팽창 Poly(acrylonitrile-co-methacrylonitrile) 마이크로캡슐의 제조
Preparation of Thermally Expandable Poly(acrylonitrile-co-methacrylonitrile) Microcapsules Using β-Cyclodextrin as Pickering Emulsifier
E-mail:
초록
피커링 현탁 중합법을 통하여 열팽창성 poly(acrylonitrile-co-methacrylonitrile) 마이크로 캡슐을 제조하였다. 피커링 유화제로서 β-cyclodextrin(β-CD)과 polyvinylpyrrolidone(PVP)의 조합이 최초로 사용되었다. β-CD는 독성이 낮으며 경제적이며 상대적으로 좁은 입자 크기 분포도를 제조하는 것이 가능하다고 알려져 있다. Acrylonitrile(AN)과 methacrylonitrile(MAN)이 단량체로 사용되었으며, β-CD 함량, β-CD/PVP의 단량체에 대한 비율, AN/MAN 비율, 다양한 발포제의 효과에 대하여 입자의 제조 특성 및 마이크로캡슐의 물성에 대하여 조사하였다. 약 125 μm 입경의 캡슐이 제조되었으며, 2 : 1 β-CD : PVP 비율, 3.5 wt%의 피커링 분산제의 함량에서 제조된 캡슐이 가장 우수한 열팽창 성능을 보였다. TGA 분석 결과 약 35%의 발포제가 캡슐화되었다. 결과적으로 본 연구에서 사용된 β-CD 는 현탁중합에 있어 우수한 피커링 유화제로서의 성능을 보였다.
Thermally expandable poly(acrylonitrile-co-methacrylonitrile) microcapsules were prepared by Pickering suspension polymerization. β-Cyclodextrin (β-CD) and polyvinylpyrrolidone (PVP) pair as the Pickering emulsifier was used as picking emulsifiers for the first time. β-CD is low in toxicity, cheap, and can produce particles with a relatively narrow particle size distribution. Acrylonitrile (AN) and methacrylonitrile (MAN) were used as monomers. The effects of β-CD content, the ratio of β-CD/PVP relative to the amount of monomer, AN/MAN ratio, and the various blowing agents were investigated for the preparation and properties of microcapsules. Thermally expandable microcapsules having a size of about 125 μm were produced. When β-CD : PVP was 2 : 1 at a total dispersant content of 3.5 wt%, the microcapsules had the best expansion performance. TGA analysis confirmed that about 35% of the hydrocarbons were encapsulated in the microcapsules. Finally, it was found that β-CD serves as a good Pickering emulsifier in suspension polymerization.
  1. Kondo A, Microcapsule Processing and Technology, Marcel Dekker Inc., New York, 1979.
  2. Benita S, Microencapsulation: Methods and Industrial Applications, CRC Press, Boca Raton, 2006.
  3. Lu R, Dou H, Qiu Y, Zhang D, Sun K, Zhang Y, Colloid Polym. Sci., 287, 683 (2009)
  4. Griss P, Andersson H, Stemme G, Lab Chip, 2, 117 (2002)
  5. Kim YD, Morr CV, J. Agr. Food Chem., 44, 1314 (1996)
  6. Jonsson M, Nordin O, Kron AL, Malmstrom E, J. Appl. Polym. Sci., 117(1), 384 (2010)
  7. Kawaguchi Y, Oishi T, J. Appl. Polym. Sci., 93(2), 505 (2004)
  8. Vamvounis G, Jonsson M, Malmstrom E, Hult A, Eur. Polym. J., 49, 1503 (2013)
  9. Rheem MJ, Jung H, Ha JU, Baeck SH, Shim SE, Colloid Polym. Sci., 295, 171 (2017)
  10. Wu J, Ma GH, Small, 12, 4633 (2016)
  11. Sadeghpour A, Pirolt F, Glatter O, Langmuir, 29(20), 6004 (2013)
  12. Pichot R, Spyropoulos F, Norton IT, J. Colloid Interface Sci., 377, 396 (2012)
  13. Whitby CP, Fornasiero D, Ralston J, J. Colloid Interface Sci., 323(2), 410 (2008)
  14. Li CF, Liu Q, Mei Z, Wang J, Xu J, Sun DJ, J. Colloid Interface Sci., 336(1), 314 (2009)
  15. Yang F, Liu SY, Xu J, Lan Q, Wei F, Sun DJ, J. Colloid Interface Sci., 302(1), 159 (2006)
  16. Wang H, Hobbie EK, Langmuir, 19(8), 3091 (2003)
  17. Zhou J, Wang LJ, Qiao XY, Binks BP, Sun K, J. Colloid Interface Sci., 367, 213 (2012)
  18. Tsuji S, Kawaguchi H, Langmuir, 24(7), 3300 (2008)
  19. Inoue M, Hashizaki K, Taguchi H, Saito Y, J. Oleo Sci., 58, 85 (2009)
  20. Duchene D, Bochot A, Yu SC, Pepin C, Seiller M, Int. J. Pharm., 266, 85 (2003)
  21. Inoue M, Hashizaki K, Taguchi H, Saito Y, J. Dispersion Sci. Technol., 31, 1648 (2010)
  22. Shimada KA, Kawano KI, Ishii JU, Nakamura TA, J. Food Sci., 57, 655 (1992)
  23. Mathapa BG, Paunov VN, Phys. Chem. Chem. Phys., 15, 17903 (2013)
  24. Kim JG, Ha JU, Jeoung SK, Lee K, Baeck SH, Shim SE, Colloid Polym. Sci., 293, 3595 (2015)
  25. Kim JW, Suh KD, Polymer, 41(16), 6181 (2000)
  26. Ma GH, Sone H, Omi S, Macromolecules, 37(8), 2954 (2004)
  27. Allen SM, Fujii M, Stannett V, Hopfenberg HB, Williams JL, J. Membr. Sci., 2, 153 (1977)