Polymer(Korea), Vol.44, No.2, 240-247, March, 2020
β-Cyclodxtrin을 피커링 유화제로 이용한 열팽창 Poly(acrylonitrile-co-methacrylonitrile) 마이크로캡슐의 제조
Preparation of Thermally Expandable Poly(acrylonitrile-co-methacrylonitrile) Microcapsules Using β-Cyclodextrin as Pickering Emulsifier
E-mail:
초록
피커링 현탁 중합법을 통하여 열팽창성 poly(acrylonitrile-co-methacrylonitrile) 마이크로 캡슐을 제조하였다. 피커링 유화제로서 β-cyclodextrin(β-CD)과 polyvinylpyrrolidone(PVP)의 조합이 최초로 사용되었다. β-CD는 독성이 낮으며 경제적이며 상대적으로 좁은 입자 크기 분포도를 제조하는 것이 가능하다고 알려져 있다. Acrylonitrile(AN)과 methacrylonitrile(MAN)이 단량체로 사용되었으며, β-CD 함량, β-CD/PVP의 단량체에 대한 비율, AN/MAN 비율, 다양한 발포제의 효과에 대하여 입자의 제조 특성 및 마이크로캡슐의 물성에 대하여 조사하였다. 약 125 μm 입경의 캡슐이 제조되었으며, 2 : 1 β-CD : PVP 비율, 3.5 wt%의 피커링 분산제의 함량에서 제조된 캡슐이 가장 우수한 열팽창 성능을 보였다. TGA 분석 결과 약 35%의 발포제가 캡슐화되었다. 결과적으로 본 연구에서 사용된 β-CD 는 현탁중합에 있어 우수한 피커링 유화제로서의 성능을 보였다.
Thermally expandable poly(acrylonitrile-co-methacrylonitrile) microcapsules were prepared by Pickering suspension polymerization. β-Cyclodextrin (β-CD) and polyvinylpyrrolidone (PVP) pair as the Pickering emulsifier was used as picking emulsifiers for the first time. β-CD is low in toxicity, cheap, and can produce particles with a relatively narrow particle size distribution. Acrylonitrile (AN) and methacrylonitrile (MAN) were used as monomers. The effects of β-CD content, the ratio of β-CD/PVP relative to the amount of monomer, AN/MAN ratio, and the various blowing agents were investigated for the preparation and properties of microcapsules. Thermally expandable microcapsules having a size of about 125 μm were produced. When β-CD : PVP was 2 : 1 at a total dispersant content of 3.5 wt%, the microcapsules had the best expansion performance. TGA analysis confirmed that about 35% of the hydrocarbons were encapsulated in the microcapsules. Finally, it was found that β-CD serves as a good Pickering emulsifier in suspension polymerization.
Keywords:thermally expandable microcapsule;β-cyclodextrin;pickering emulsifier;suspension polymerization;poly(acrylonitrile-co-methacrylonitrile)
- Kondo A, Microcapsule Processing and Technology, Marcel Dekker Inc., New York, 1979.
- Benita S, Microencapsulation: Methods and Industrial Applications, CRC Press, Boca Raton, 2006.
- Lu R, Dou H, Qiu Y, Zhang D, Sun K, Zhang Y, Colloid Polym. Sci., 287, 683 (2009)
- Griss P, Andersson H, Stemme G, Lab Chip, 2, 117 (2002)
- Kim YD, Morr CV, J. Agr. Food Chem., 44, 1314 (1996)
- Jonsson M, Nordin O, Kron AL, Malmstrom E, J. Appl. Polym. Sci., 117(1), 384 (2010)
- Kawaguchi Y, Oishi T, J. Appl. Polym. Sci., 93(2), 505 (2004)
- Vamvounis G, Jonsson M, Malmstrom E, Hult A, Eur. Polym. J., 49, 1503 (2013)
- Rheem MJ, Jung H, Ha JU, Baeck SH, Shim SE, Colloid Polym. Sci., 295, 171 (2017)
- Wu J, Ma GH, Small, 12, 4633 (2016)
- Sadeghpour A, Pirolt F, Glatter O, Langmuir, 29(20), 6004 (2013)
- Pichot R, Spyropoulos F, Norton IT, J. Colloid Interface Sci., 377, 396 (2012)
- Whitby CP, Fornasiero D, Ralston J, J. Colloid Interface Sci., 323(2), 410 (2008)
- Li CF, Liu Q, Mei Z, Wang J, Xu J, Sun DJ, J. Colloid Interface Sci., 336(1), 314 (2009)
- Yang F, Liu SY, Xu J, Lan Q, Wei F, Sun DJ, J. Colloid Interface Sci., 302(1), 159 (2006)
- Wang H, Hobbie EK, Langmuir, 19(8), 3091 (2003)
- Zhou J, Wang LJ, Qiao XY, Binks BP, Sun K, J. Colloid Interface Sci., 367, 213 (2012)
- Tsuji S, Kawaguchi H, Langmuir, 24(7), 3300 (2008)
- Inoue M, Hashizaki K, Taguchi H, Saito Y, J. Oleo Sci., 58, 85 (2009)
- Duchene D, Bochot A, Yu SC, Pepin C, Seiller M, Int. J. Pharm., 266, 85 (2003)
- Inoue M, Hashizaki K, Taguchi H, Saito Y, J. Dispersion Sci. Technol., 31, 1648 (2010)
- Shimada KA, Kawano KI, Ishii JU, Nakamura TA, J. Food Sci., 57, 655 (1992)
- Mathapa BG, Paunov VN, Phys. Chem. Chem. Phys., 15, 17903 (2013)
- Kim JG, Ha JU, Jeoung SK, Lee K, Baeck SH, Shim SE, Colloid Polym. Sci., 293, 3595 (2015)
- Kim JW, Suh KD, Polymer, 41(16), 6181 (2000)
- Ma GH, Sone H, Omi S, Macromolecules, 37(8), 2954 (2004)
- Allen SM, Fujii M, Stannett V, Hopfenberg HB, Williams JL, J. Membr. Sci., 2, 153 (1977)