화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.31, No.2, 147-152, April, 2020
천연오일로부터 내화학성이 향상된 에폭시계 수지용 반응성 희석제의 제조 : CCD-RSM을 이용한 최적화
Production of Reactive Diluent for Epoxy Resin with High Chemical Resistance from Natural Oil : Optimization Using CCD-RSM
E-mail:
초록
본 연구에서는 천연오일인 cashew nut shell liquid (CNSL)의 구성성분인 cardanol을 이용하여 내화학성이 향상된 에폭시계 수지용 반응성 희석제 제조 공정을 최적화하였다. 이를 위해 반응표면분석법 중 중심합성계획법을 이용하여 최적화과정를 설계하였다. 계량인자로는 cardanol/ECH 반응몰비, 반응시간, 반응온도이고, 반응치는 수율, 에폭시 당량(EEW), 점도이다. 기초실험으로부터 계량인자 범위를 각각 cardanol/ECH 반응몰비(2~4), 반응시간(4~8 h), 반응온도(100~140 ℃)로 설정한 후 최적화과정을 진행한 결과 최적의 조건은 cardanol/ECH 반응몰비(3.33), 반응시간(6.18 h), 반응온도(120 ℃)로 산출되었으며, 이 조건에서의 예측값은 수율(100%), EEW (429.89 g/eq.), 점도(41.65 cP)로 나타났다. 실제 실험을 통해 알아본 결과 오차율은 0.3% 이하로 나타나 중심합성계획모델을 이용하여 cardanol 원료 반응성희석제의 제조 공정을 최적화할 수 있었다.
In this study, we dedicated to optimize the process for a reactive diluent for epoxy resin of improved chemical resistance by using cardanol, a component of natural oil of cashew nut shell liquid (CNSL). The central composite design (CCD) model of response surface methodology (RSM) was used for the optimization. The quantitative factors for CCD-RSM were the cardanol/ ECH mole ratio, reaction time, and reaction temperature. The yield, epoxy equivalent, and viscosity were selected as response values. Basic experiments were performed to design the reaction surface analysis. The ranges of quantitative factors were determined as 2~4, 4~8 h, and 100~140 ℃ for the cardanol/ECH reaction mole ratio, reaction time, and reaction temperature, respectively. From the result of CCD-RSM, the optimum conditions were determined as 3.33, 6.18 h, and 120 ℃ for the cardanol/ECH reaction mole ratio, reaction time, and reaction temperature, respectively. At these conditions, the yield, epoxy equivalence, and viscosity were estimated as 100%, 429.89 g/eq., and 41.65 cP, respectively. In addition, the experimental results show that the error rate was less than 0.3%, demonstrating the validity of optimization.
  1. Bakar M, Szymanska J, Rudecka J, Fitas J, Polym. Polym. Compos., 18(9), 503 (2010)
  2. Burmistrov IN, Shatrova NV, Mostovoy AS, Mazov IN, Kuznetsov DV, Panova LG, Gorokhovsky AV, Yudin AG, Polym. Eng. Sci., 54(12), 2866 (2014)
  3. Fu YX, He ZX, Mo DC, Lu SS, Appl. Therm. Eng., 66, 493 (2014)
  4. Pal N, Srivastava D, Rai JS, Appl. Polym. Sci., 117(4), 2406 (2010)
  5. Korte KA, Kuuliala O, Eckerman LMH, Suuronen K, Contact Dermatitis, 72(6), 387 (2015)
  6. Ikeda R, Tanka H, Uyama H, Kobayashi S, Polymer, 43(12), 3475 (2002)
  7. Papadopoulou E, Chrissafis K, Thermochim. Acta, 512(1-2), 105 (2011)
  8. Yolmeh M, Najafi MBH, Farhoosh R, Food Chem., 155, 319 (2014)
  9. Sharma J, Anand SP, Pruthi V, Chaddha AS, Bhatia J, Kaith BS, Mater. Chem. Phys., 196, 207 (2017)
  10. Monoj P, Sharathkumar KM, James WR, Polym. Test., 31(5), 716 (2012)