화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.85, 181-189, May, 2020
Effects of spherical adsorbent fluidization and self-rotation on removal of VOCs in a cyclonic fluidized bed
E-mail:
A fluidized bed has the advantages of treating large flows, intensifying mass and heat transfer, and lowering costs. This study proposed a cyclonic fluidized bed packed with spherical activated carbon adsorbents for volatile organic compounds adsorption. The fluidization and self-rotation of the AC particles in a 25 mm cyclonic fluidized bed were studied with high-speed camera testing technology. The effects of the particle movement on the adsorption efficiency of toluene were also tested. The results show that most of the particles at the inlet side of the cyclonic fluidized bed were moving up when the inlet airflow rate was greater than 2.0 m3/h. The particles began to move in clusters when the relative packing height increased to a critical value of 0.57. Increasing the gas flow rate and the diameter and height of the core column will increase the self-rotation speed of the total particles. The maximum selfrotation speed of spherical adsorbents reached 1700 rad/s at the inlet flow rate of 2.5 m3/h. In the case of the same axial velocity of the gas phase in the upper space of the core column, increasing the particle selfrotation speed can slightly improve the adsorption efficiency. The maximum adsorption efficiency reached 99% when the inlet flow rate is 1.0 m3/h with relative packing height 0.65.
  1. Qiu K, Yang L, Lin J, Wang P, Yang Y, Ye D, Wang L, Atmos. Environ., 86, 102 (2014)
  2. Yu C, Crump D, Build. Environ., 33, 357 (1998)
  3. Saleh TA, J. Water Supply Res. Technol. AQUA, 64, 892 (2015)
  4. Saleh TA, Sarı A, Tuzen M, J. Mol. Liq., 219, 937 (2016)
  5. Saleh TA, Al-Absi AA, J. Mol. Liq., 248, 577 (2017)
  6. Saleh TA, Tuzen M, Sarı A, J. Environ. Chem. Eng., 7 (2019)
  7. Yang CT, Miao G, Pi YH, Xia QB, Wu JL, Li Z, Xiao J, Chem. Eng. J., 370, 1128 (2019)
  8. Yu FD, Luo LA, Grevillot G, J. Chem. Eng. Data, 47(3), 467 (2002)
  9. Zhang XY, Gao B, Creamer AE, Cao CC, Li YC, J. Hazard. Mater., 338, 102 (2017)
  10. Zou W, Gao B, Ok YB, Dong L, Chemosphere, 218, 845 (2019)
  11. Muller BR, Carbon, 48, 3607 (2010)
  12. Delage F, Pre P, Cloirec PL, Environ. Sci. Technol., 34, 4816 (2000)
  13. Kamravaei S, Shariaty P, Lashaki MJ, Atkinson JD, Hashisho Z, Phillips JH, Anderson JE, Nichols M, Ind. Eng. Chem. Res., 56(5), 1297 (2017)
  14. Guo Q, Liu YZ, Qi GS, Jiao WZ, Chem. Eng. Res. Des., 143, 47 (2019)
  15. Clarke K, Hill GA, Pugsley T, Process Saf. Environ. Prot., 86, 283 (2008)
  16. Song WL, Tondeur D, Luo LG, Li JH, Adsorpt. J. Int. Adsorpt. Soc., 11, 853 (2005)
  17. Lv B, Luo ZF, Zhang B, Qin XZ, Zhu XN, Powder Technol., 339, 344 (2018)
  18. Zheng WJ, Zhang M, Zhang Y, Lyu JF, Yang HR, Chem. Eng. Res. Des., 141, 220 (2019)
  19. Hernandez-Jimenez F, Sanchez-Delgado S, Gomez-Garcia A, Acosta-Iborra A, Chem. Eng. Sci., 66(17), 3753 (2011)
  20. Chen X, Zhong WQ, Heindel TJ, Chem. Eng. Sci., 203, 104 (2019)
  21. Xu YP, Li TW, Lu LQ, Tebianian S, Chaouki J, Leadbeater TW, Jafari R, Parker DJ, Seville J, Ellis N, Grace JR, Chem. Eng. Sci., 195, 356 (2019)
  22. Wang C, Li C, Lan X, Wu Y, Gao J, Particuology, 48, 144 (2020)
  23. Wu XC, Wang QH, Luo ZY, Fang MX, Cen KF, Powder Technol., 181(1), 21 (2008)
  24. Wu YC, Wu XC, Yao LC, Brunel M, Coetmellec S, Lebrun D, Grehan G, Cen K, Powder Technol., 284, 371 (2015)
  25. Hagemeier T, Buck A, Tsotsas E, Procedia Eng., 102, 841 (2015)
  26. Liu RJ, Xiao R, Ye M, Liu ZM, Adv. Powder Technol., 29(7), 1655 (2018)
  27. Huang Y, Li JP, Zhang YH, Wang HL, Sep. Purif. Technol., 177, 263 (2017)
  28. Shi D, Huang Y, Wang HL, Yuan W, Fu PB, Sep. Purif. Technol., 210, 117 (2019)
  29. Lin CC, Lin YC, Chien KS, J. Ind. Eng. Chem., 15(6), 813 (2009)
  30. Lv XL, Zhang YQ, Li L, Zhang WR, Liang P, Process Saf. Environ. Prot., 125, 64 (2019)