화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.85, 190-195, May, 2020
High efficient photocatalytic reduction of aqueous Zn2+, Pb2+ and Cu2+ ions using modified titanium dioxide nanoparticles with amino acids
E-mail:
Photocatalytic reduction of Zn2+, Cu2+ and Pb2+ ions were performed using modified titanium dioxide nanoparticles with histidine (His) and imidazole (IM) as the modifier and characterized by FT-IR, X-RD, FESEM, EDAX, TEM and A.A.S. techniques. The anatase phase titanium dioxide nanoparticles with the size distribution of 25-45 nm were obtained by the Sol.Gel Method. In the case of Cu2+, the reduction reaction was completed in 10 min. The photo-reduction yields of Pb2+ and Zn2+ ions achieved to 98% removal during 60 and 160 min, respectively. The immobilized modifiers on the TiO2 surface accelerate the electron transfer from TiO2 to the metal ion via imidazole bridge upon ultraviolet light irradiation. This photocatalytic reduction could be proceeded through chemisorption, reduction and desorption processes of metal ions on the surface of modified TiO2, sequentially and repeatably. Herein, methanol was played as an artificial electron donor. These hybrid photocatalysts were reused several times without losing efficiency while the highest reduction yield was achieved for TiO2@His NPs. So, modified TiO2 with amino acids could be an excellent candidate for metal ion reduction by an inexpensive method with advantages of high performance, high activity, reusability, easily prepared, easily separate, environmentally friendly and short reaction time.
  1. Zhang X, Song L, Xiaolong Z, Li M, Energy Procedia, 17, 422 (2012)
  2. World Health Organization Geneva 1996, vol. 2, 1996.
  3. Liang P, Sang H, Anal. Biochem., 380(1), 21 (2008)
  4. Korn MDGA, De Andrade JB, De Jesus DS, Lemos VA, Bandeira MLSF, et al., Talanta, 69(1), 16 (2006)
  5. Mohan S, Sreelakshmi G, J. Hazard. Mater., 153(1-2), 75 (2008)
  6. Koh JY, Mol. Neurobiol., 24(1-3), 99 (2001)
  7. Chong MN, Jin B, Chow CWK, Saint C, Water Res., 44(10), 2997 (2010)
  8. Alivisatos AP, J. Phys. Chem., 100(31), 13226 (1996)
  9. Kamat PV, J. Phys. Chem. B, 106(32), 7729 (2002)
  10. Eustis S, El-Sayed MA, Chem. Soc. Rev., 35(3), 209 (2006)
  11. Link S, El-Sayed MA, J. Phys. Chem. B, 103(40), 8410 (1999)
  12. Hosseini F, Mohebbi S, J. Clust. Sci., 29, 289 (2018)
  13. Hosseini F, Safaei E, Mohebbi S, J. Nanopart. Res., 19(7), 240 (2017)
  14. Irani M, Mohammadi T, Mohebbi S, J. Mex. Chem. Soc., 60(4), 218 (2016)
  15. Hagfeldt A, Gratzel M, Chem. Rev., 95(1), 49 (1995)
  16. Gratzel M, Nature, 414, 338 (2001)
  17. O’regan B, Gratzel M, Nature, 353, 737 (1991)
  18. Nozik AJ, Annu. Rev. Phys. Chem., 29(1), 189 (1978)
  19. Etacheri V, Seery MK, Hinder SJ, Pillai SC, Adv. Funct. Mater., 21(19), 3744 (2011)
  20. Etacheri V, Seery MK, Hinder SJ, Pillai SC, Chem. Mater., 22, 3843 (2010)
  21. Askari P, Mohebbi S, New J. Chem., 42, 1715 (2018)
  22. Safaei E, Mohebbi S, J. Mater. Chem. A, 4(10), 3933 (2016)
  23. Etacheri V, Seery MK, Hinder SJ, Pillai SC, Inorg. Chem., 51(13), 7164 (2012)
  24. Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG, Dunlop PSM, Hamilton JWJ, Byrne JA, O'Shea K, Entezari MH, Dionysiou DD, Appl. Catal. B: Environ., 125, 331 (2012)
  25. Thurnauer MC, Rajh T, Tiede DM, Lakkaraju PS, Sousa A, Garnovskii AD, Garnovskii DA, Roos BO, Vallance C, Wood BR, Acta Chem. Scand., 51(5), 610 (1997)
  26. Fukuzumi S, Ohkubo K, Chem. Sci., 4(2), 561 (2013)
  27. Tada H, Fujishima M, Kobayashi H, Chem. Soc. Rev., 40(7), 4232 (2011)
  28. Weber AS, Grady AM, Koodali RT, Catal. Sci. Technol., 2(4), 683 (2012)
  29. Chen LX, Rajh T, Micic O, Wang Z, Tiede DM, Thurnauer M, Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 133(1-4), 8 (1997)
  30. Skubal LR, Meshkov NK, J. Photochem. Photobiol. A-Chem., 148(1), 211 (2002)
  31. Singh C, Chaudhary R, J. Renew. Sustain. Energy, 5(5), 53102 (2013)
  32. Ennigrou DJ, Ali MB, Dhahbi M, Desalination, 343, 82 (2014)
  33. Rajh T, Ostafin AE, Micic OI, Tiede DM, Thurnauer MC, J. Phys. Chem., 100(11), 4538 (1996)
  34. Murruni L, Conde F, Leyva G, Litter MI, Appl. Catal. B: Environ., 84(3-4), 563 (2008)
  35. Kormann C, Bahnemann DW, Hoffmann MR, J. Phys. Chem., 92(18), 5196 (1988)
  36. Makarova OV, Rajh T, Thurnauer MC, Martin A, Kemme PA, Cropek D, Environ. Sci. Technol., 34(22), 4797 (2000)
  37. Henglein A, Electrochemistry II, Springer, pp.113 1988.
  38. Nguyen VNH, Amal R, Beydoun D, Chem. Eng. Sci., 58(19), 4429 (2003)
  39. Subramaniam MN, Goh PS, Lau WJ, Ismail AF, Nanomaterials, 9(4), 625 (2019)