Journal of Industrial and Engineering Chemistry, Vol.85, 196-207, May, 2020
The reaction kinetics of CO2 methanation on a bifunctional Ni/MgO catalyst
E-mail:
A bifunctional Ni/MgO catalyst was prepared to catalyze CO2 methanation and make use of CO2 as an abundant hydrogen storage facility. The effect of Ni loading and MgO quality on the rate of methanation was tested in a temperature range of 533-648 K. The Ni loading was varied between 0 to 27 wt.% on MgO. To investigate the impact of matrix elements, a MgO/CaO support was tested with 21 wt.%. nickel loading. Further, the role of MgO in the bifunctional catalyst was proven. The reaction kinetics was modeled with a Langmuir.Hinshelwood approach considering the bifunctional character of the catalyst. Nickel provides the adsorbent capacity for hydrogen and is highly selective for methane. MgO activates CO2 through chemisorption. Increasing Ni loading of the catalyst increased the rate of CO2 conversion. According to the results, the mechanism of CO2 methanation did not change with Ni loading. The Ni/MgO catalyst acted as a robust, active and highly selective catalyst for CO2methanation. With CO2 conversion of 87%, the selectivity to methane was ≥ 99%. Besides excellent catalytic activity the catalysts suffice the necessity of simple catalyst preparation, usage and recyclability for industrial applicability of CO2 methanation.
- Global Carbon Project, Historical carbon dioxide emissions from global fossil fuel combustion and industrial processes from 1757 to 2017.
- IPCC, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2014.
- Gnanakumar ES, Chandran N, Kozhevnikov IV, Grau-Atienza A, Fernandez EVR, Sepulveda-Escribano A, Shiju NR, Chem. Eng. Sci., 194, 2 (2019)
- Global Carbon Project, Global CO2 emissions from 1997 to 2017.
- Centi G, Perathoner S, Catal. Today, 148(3-4), 191 (2009)
- Maroufmashat A, Fowler M, Energies, 10(8) (2017)
- Garcia-Garcia I, Izquierdo U, Barrio VL, Arias PL, Cambra JF, Int. J. Hydrog. Energy, 41(43) (2016)
- Jia XY, Zhang XS, Rui N, Hu X, Liu CJ, Appl. Catal. B: Environ., 244, 159 (2019)
- Reiter G, Lindorfer J, J. CO2 Util., 10, 40 (2015)
- Thema M, Bauer F, Sterner M, Renew. Sustain. Energy Rev, 775 (2019).
- Dincer I, Acar C, Int. J. Hydrog. Energy, 40(34), 11094 (2014)
- Acar C, Dincer I, Int. J. Hydrog. Energy, 39(1), 1 (2014)
- Baldauf-Sommerbauer GF, Reductive calcination of mineral iron carbonate and mineral magnesium carbonate Graz University of Technology, (2017).
- Jaffar MM, Nahil MA, Williams PT, Energy Technol., 7(11), 190079 (2019)
- Moghacidam SV, Rezaei M, Meshkani F, Daroughegi R, Int. J. Hydrog. Energy, 43(34), 16522 (2018)
- Koschany F, Schlereth D, Hinrichsen O, Appl. Catal. B: Environ., 181, 504 (2016)
- Outotec HSC Chemistry Software, (2018).
- Su X, Xu J, Liang B, Duan H, Hou B, Huang Y, J. Energy Chem., 25(4), 553 (2016)
- Gao J, Liu Q, Gu F, Liu B, Zhong Z, Su F, RSC Adv., 5(29), 22759 (2015)
- Graca I, Gonzalez LV, Bacariza MC, Fernandes A, Henriques C, Lopes JM, Ribeiro MF, Appl. Catal. B: Environ., 147, 101 (2014)
- Sreedhar I, Varun Y, Singh SA, Venugopal A, Reddy BM, Catal. Sci. Technol., 9(17), 4478 (2019)
- Le TA, Kang JK, Park ED, Top. Catal., 61(15-17), 1537 (2018)
- Lin JH, Ma CP, Wang Q, Xu YF, Ma GY, Wang J, Wang HT, Dong CL, Zhang CH, Ding MY, Appl. Catal. B: Environ., 243, 262 (2019)
- Ashok J, Ang ML, Kawi S, Catal. Today, 281, 304 (2017)
- Bette N, Thielemann J, Schreiner M, Mertens F, ChemCatChem, 8(18), 2903 (2016)
- Aldana PAU, Ocampo F, Kobl K, Louis B, Thibault-Starzyk F, Daturi M, Bazin P, Thomas S, Roger AC, Catal. Today, 215, 201 (2013)
- Beierlein D, Haussermann D, Pfeifer M, Schwarz T, Stowe K, Traa Y, Klemm E, Appl. Catal. B: Environ., 247, 200 (2018)
- Garbarino G, Riani P, Magistri L, Busca G, Int. J. Hydrog. Energy, 39(22), 11557 (2014)
- Garbarino G, Wang C, Cavattoni T, Finocchio E, Riani P, Flytzani-Stephanopoulos M, Busca G, Appl. Catal. B Environ. (2018).
- Fukuhara C, Hayakawa K, Suzuki Y, Kawasaki W, Watanabe R, Appl. Catal. A: Gen., 532, 12 (2017)
- Muroyama H, Tsuda Y, Asakoshi T, Masitah H, Okanishi T, Matsui T, Eguchi K, J. Catal., 343, 178 (2016)
- Lim JY, McGregor J, Sederman AJ, Dennis JS, Chem. Eng. Sci., 141, 28 (2016)
- Rahmani S, Rezaei M, Meshkani F, J. Ind, Eng. Chem., 20(4), 1346 (2014)
- Romero-Saez M, Dongil AB, Benito N, Espinoza-Gonzalez R, Escalona N, Gracia F, Appl. Catal. B: Environ., 237, 817 (2018)
- Swalus C, Jacquemin M, Poleunis C, Bertrand P, Ruiz P, Appl. Catal. B: Environ., 125, 41 (2012)
- Younas M, Sethupathi S, Kong LL, Mohamed AR, Int. J. Energy Res., 42(10), 3289 (2018)
- Arandiyan H, Kani K, Wang Y, Jiang B, Kim J, Yoshino M, Rezaei M, Rowan AE, Dai H, Yamauchi Y, ACS Appl. Mater. Interfaces, 10(30), 24963 (2018)
- Falbo L, Martinelli M, Visconti CG, Lietti L, Bassano C, Deiana P, Appl. Catal. B: Environ., 225, 354 (2018)
- Petala A, Panagiotopoulou P, Appl. Catal. B: Environ., 224, 919 (2018)
- Xu J, Lin Q, Su X, Duan H, Geng H, Huang Y, Chinese J. Chem. Eng., 24(1), 140 (2016)
- Duyar MS, Ramachandran A, Wang C, Farranuto RJ, J. CO2 Util., 12, 27 (2015)
- Yan Y, Dai YH, He H, Yu YB, Yang YH, Appl. Catal. B: Environ., 196, 108 (2016)
- Miao B, Ma SSK, Wang X, Su H, Chan SH, Catal. Sci. Technol., 6(12), 4048 (2016)
- Huang J, Li X, Wang X, Fang X, Wang H, Xu X, J. CO2 Util., 33, 55 (2019)
- Lianag C, Tian H, Gao G, Zhang S, Liu Q, Dong D, Hu X, Int. J. Hydrog. Energy, 45(1), 531 (2020)
- Zhang ZM, Tian Y, Zhang LJ, Hu S, Xiang J, Wang Y, Xu LL, Liu Q, Zhang S, Hu X, Int. J. Hydrog. Energy, 44(18), 9291 (2019)
- Italiano C, Llorca J, Pino L, Ferraro M, Antonucci V, Vita A, Appl. Catal. B: Environ., 264 (2020)
- Wolf M, Wong LH, Schuler C, Hinrichsen O, J. CO2 Util., 36, 276 (2020)
- Guo M, Lu G, Catal. Commun., 54, 55 (2014)
- Park JN, McFarland EW, J. Catal., 266(1), 92 (2009)
- Kim HY, Lee HM, Park J, J. Phys, Chem. C, 114, 7128 (2010)
- Takezawa N, Terunuma H, Shimokawabe M, Kobayashi H, Appl. Catal., 23, 291 (1986)
- Arellano-Trevino MA, He Z, Libby MC, Farrauto RJ, J. CO2 Util., 31, 143 (2019)
- Hu L, Urakawa A, J. CO2 Util., 25, 323 (2018)
- Li S, Liu G, Zhang S, An K, Ma Z, Wang L, Liu Y, J. Energy Chem., 43, 155 (2020)
- Kokka A, Ramantani T, Petala A, Panagiotopoulou P, Catal. Today (2019).
- Branco JB, Brito PE, Ferreira AC, Chem. Eng. J., 380 (2020)
- Dias YR, Perez-Lopez OW, Energy Conv. Manag., 203 (2020)
- Ye RP, Gong W, Sun Z, Sheng Q, Shi X, Wang T, Yao Y, Razink JJ, Lin Zhou Z, Adidharma H, Tang J, Fan M, Yao YG, Energy, 188 (2019)
- Huang X, Wang P, Zhang Z, Zhang S, Du X, Bi Q, Huang F, New J. Chem., 43, 13217 (2019)
- Duyar MS, Wang S, Arellano-Trevino MA, Farrauto RJ, J. CO2 Util., 5, 65 (2016)
- Bond GC, Sarsam SP, Appl. Catal., 38, 365 (1988)
- Fisher JC, Siriwardane RV, Energy Fuels, 28(9), 5936 (2014)
- Li Y, Lu G, Ma J, RSC Adv., 4(34), 17420 (2014)
- Nakayama T, Ichikuni N, Sato S, Nozaki F, Appl. Catal. A: Gen., 158(1-2), 185 (1997)
- Ronsch S, Kochermann J, Schneider J, Matthischke S, Chem. Eng. Technol., 39(2), 208 (2016)
- Van Herwijnen T, Van Doesburg H, De Jong WA, J. Catal., 28(3), 391 (1973)
- Weatherbee GD, Bartholomew CH, J. Catal., 77, 460 (1982)
- Champon I, Bengaouer A, Chaise A, Thomas S, Roger AC, J. CO2 Util., 34, 256 (2019)
- Chiang JH, Hopper JR, Ind. Eng. Chem. Prod. Res. Dev., 22(2), 225 (1983)
- Kesavan JK, Luisetto I, Tuti S, Meneghini C, Iucci G, Battocchio C, Mobilio S, Casciardi S, Sisto R, J. CO2 Util., 23, 200 (2018)
- Baldauf-Sommerbauer G, Lux S, Aniser W, Bitschnau B, Letofsky-Papst I, Siebenhofer M, J. CO2 Util., 23, 1 (2017)
- Baldauf-Sommerbauer G, Lux S, Aniser W, Siebenhofer M, Chem. Eng. Technol., 39(11), 2035 (2016)
- Gac W, Zawadzki W, Rotko M, Greluk M, Słowik G, Kolb G, Catal. Today (2019).