Korean Journal of Chemical Engineering, Vol.37, No.5, 875-882, May, 2020
Synthesis of hollow magnetic carbon microbeads using iron oleate@alginate core-shell hydrogels and their application to magnetic separation of organic dye
E-mail:
The use of biopolymers obtained from natural resources as a carbon source has attracted much attention. In this study, we introduced a novel method for synthesis of hollow magnetic carbon microbeads (HMCMs) based on core-shell alginate hydrogel microbeads consisting of a hydrophobic iron-oleate core encapsulated in a shell of ionically cross-linked alginate hydrogel using the syringe pump with the fabricated double-layered syringe needle. This allows in-situ formation of magnetic particles and carbon walls simultaneously during carbonization. After surface passivation with a silica coating followed by direct carbonization led to in-situ formation of iron oxide particles via the thermal decomposition of the iron-oleate precursor in the core region and a carbon shell derived from the cross-linked alginate polymer during carbonization. The subsequent removal of the silica shell resulted in the formation of HMCMs with a unique surface wrinkle morphology and superparamagnetic property. HMCMs were applied to remove dye from the contaminated wastewater, and the dye-adsorbed HMCMs could be easily removed by an external magnetic field. The proposed synthesis of hollow carbon microbeads can be further optimized to control the size of core-shell microbeads and the components encapsulated in the core and shell, and hence will be useful for preparing diverse types of beads for various applications.
- Arami M, Limaee NY, Mahmoodi NM, Tabrizi NS, J. Colloid Interface Sci., 288(2), 371 (2005)
- Robinson T, Chandran B, Nigam P, Water Res., 36, 2824 (2002)
- Mohammadi M, Hassani AJ, Mohamed AR, Najafpour GD, J. Chem. Eng. Data, 55(12), 5777 (2010)
- Liu H, Ren X, Chen L, J. Ind. Eng. Chem., 34, 278 (2016)
- Yagub MT, Sen TK, Afroze S, Ang HM, Adv. Colloid Interface Sci., 209, 172 (2014)
- Robinson T, McMullan G, Marchant R, Nigam P, Bioresour. Technol., 77(3), 247 (2001)
- Crini G, Bioresour. Technol., 97(9), 1061 (2006)
- Saleh TA, Ali I, J. Environ. Chem. Eng., 6, 5361 (2018)
- Katheresan V, Kansedo J, Lau SY, J. Environ. Chem. Eng., 6, 4676 (2018)
- San Miguel G, Lambert SD, Graham NJD, J. Chem. Technol. Biotechnol., 81(10), 1685 (2006)
- Kim H, Fortunato ME, Xu H, Bang JH, Suslick KS, J. Phys. Chem. C, 115, 20481 (2011)
- Wang Y, Zhang L, Wu Y, Zhong Y, Hu Y, Lou XW, Chem. Commun., 51, 6921 (2015)
- Olivera S, Venkatesh K, Reddy N, Jayanna BK, Inamuddin, Asiri AM, Rtimi S, Muralidhara HB, Environ. Technol. Innovation, 12, 160 (2018)
- Galan J, Rodriguez A, Gomez JM, Allen SJ, Walker GM, Chem. Eng. J., 219, 62 (2013)
- Tosheva L, Parmentier J, Valtchev V, Vix-Guterl C, Patarin J, Carbon, 43, 2474 (2005)
- Liu J, Yang T, Wang DW, Lu GQ, Zhao D, Qiao SZ, Nat. Commun., 4, 2798 (2013)
- Li M, Wu Q, Wen M, Shi J, Nanoscale Res. Lett., 4, 1365 (2009)
- Wang X, Jiang C, Hou B, Wang Y, Hao C, Wu J, Chemosphere, 206, 587 (2018)
- Ding L, Olesik SV, Chem. Mater., 17, 2353 (2005)
- Lu F, Huang C, You L, Wang J, Zhang Q, RSC Adv., 7, 23255 (2017)
- Qian HS, Han FM, Zhang B, Guo YC, Yue J, Peng BX, Carbon, 42, 761 (2004)
- Zhang T, Zhu C, Shi Y, Li Y, Zhu S, Zhang D, Mater. Lett., 205, 10 (2017)
- Shoichet MS, Li RH, White ML, Winn SR, Biotechnol. Bioeng., 50, 374 (1995)
- Morch YA, Donati I, Strand BL, Skjak-Braek G, Biomacromolecules, 7(5), 1471 (2006)
- Barnett BP, Arepally A, Stuber M, Arifin DR, Kraitchman DL, Bulte JWM, Nat. Protocols, 6, 1142 (2011)
- Kim J, Arifin DR, Muja N, Kim T, Gilad AA, Kim H, Arepally A, Hyeon T, Bulte JWM, Angew. Chem.-Int. Edit., 50, 2317 (2011)
- Shin BY, Cha BG, Jeong JH, Kim J, ACS Appl. Mater. Interfaces, 9, 31372 (2017)
- Yang X, Lu Z, Wu H, Li W, Zheng L, Zhao J, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 83, 195 (2018)
- Raymundo-Pinero E, Leroux F, Beguin F, Adv. Mater., 18(14), 1877 (2006)
- Lei Z, Zhai S, Lv J, Fan Y, An Q, Xiao Z, RSC Adv., 5, 77932 (2015)
- Cho K, Shin BY, Park HK, Cha BG, Kim J, RSC Adv., 4, 21777 (2014)
- Park J, An KJ, Hwang YS, Park JG, Noh HJ, Kim JY, Park JH, Hwang NM, Hyeon T, Nat. Mater., 3(12), 891 (2004)
- Huang KS, Yang CH, Lin YS, Wang CY, Lu K, Chang YF, Wang YL, Drug Deliv. and Transl. Res., 1, 289 (2011).
- Guerretta F, Magnacca G, Franzoso F, Ivanchenko P, Nistico R, Mater. Lett., 234, 339 (2019)
- Ross AB, Hall C, Anastasakis K, Westwood A, Jones JM, Crewe RJ, J. Anal. Appl. Pyrol., 91, 344 (2011)
- Li DM, Chen LM, Yi XJ, Zhang XW, Ye NH, Bioresour. Technol., 101(18), 7131 (2010)
- Soares JP, Santos JE, Chierice GO, Cavalheiro ETG, Ecletica Quimica, 29, 57 (2004)
- Holzwarth U, Gibson N, Nat. Nanotechnol., 6(9), 534 (2011)
- Bhattacharyya KG, Sengupta S, Sarma GK, Appl. Clay Sci., 99, 7 (2014)
- Inyinbor AA, Adekola FA, Olatunji GA, S. Afr. J. Chem., 62, 218 (2016)
- Chaudhary S, Sharma P, Renu, Kumar R, RSC Adv., 6, 62797 (2016)
- Giri SK, Das NN, Pradhan GC, Colloids Surf. A: Physicochem. Eng. Asp., 389, 43 (2011)
- Sinha A, Cha BG, Kim J, ACS Appl. Nano Mater., 1, 1940 (2018)
- Santhi M, Kumar PE, Int. J. Innov. Res. Sci. Eng. Technol., 4, 497 (2015)
- Pan X, Du Q, Zhou Y, Liu L, Xu G, Yan C, J. Nanosci. Nanotechnol., 18, 7231 (2018)