화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.37, No.5, 875-882, May, 2020
Synthesis of hollow magnetic carbon microbeads using iron oleate@alginate core-shell hydrogels and their application to magnetic separation of organic dye
E-mail:
The use of biopolymers obtained from natural resources as a carbon source has attracted much attention. In this study, we introduced a novel method for synthesis of hollow magnetic carbon microbeads (HMCMs) based on core-shell alginate hydrogel microbeads consisting of a hydrophobic iron-oleate core encapsulated in a shell of ionically cross-linked alginate hydrogel using the syringe pump with the fabricated double-layered syringe needle. This allows in-situ formation of magnetic particles and carbon walls simultaneously during carbonization. After surface passivation with a silica coating followed by direct carbonization led to in-situ formation of iron oxide particles via the thermal decomposition of the iron-oleate precursor in the core region and a carbon shell derived from the cross-linked alginate polymer during carbonization. The subsequent removal of the silica shell resulted in the formation of HMCMs with a unique surface wrinkle morphology and superparamagnetic property. HMCMs were applied to remove dye from the contaminated wastewater, and the dye-adsorbed HMCMs could be easily removed by an external magnetic field. The proposed synthesis of hollow carbon microbeads can be further optimized to control the size of core-shell microbeads and the components encapsulated in the core and shell, and hence will be useful for preparing diverse types of beads for various applications.
  1. Arami M, Limaee NY, Mahmoodi NM, Tabrizi NS, J. Colloid Interface Sci., 288(2), 371 (2005)
  2. Robinson T, Chandran B, Nigam P, Water Res., 36, 2824 (2002)
  3. Mohammadi M, Hassani AJ, Mohamed AR, Najafpour GD, J. Chem. Eng. Data, 55(12), 5777 (2010)
  4. Liu H, Ren X, Chen L, J. Ind. Eng. Chem., 34, 278 (2016)
  5. Yagub MT, Sen TK, Afroze S, Ang HM, Adv. Colloid Interface Sci., 209, 172 (2014)
  6. Robinson T, McMullan G, Marchant R, Nigam P, Bioresour. Technol., 77(3), 247 (2001)
  7. Crini G, Bioresour. Technol., 97(9), 1061 (2006)
  8. Saleh TA, Ali I, J. Environ. Chem. Eng., 6, 5361 (2018)
  9. Katheresan V, Kansedo J, Lau SY, J. Environ. Chem. Eng., 6, 4676 (2018)
  10. San Miguel G, Lambert SD, Graham NJD, J. Chem. Technol. Biotechnol., 81(10), 1685 (2006)
  11. Kim H, Fortunato ME, Xu H, Bang JH, Suslick KS, J. Phys. Chem. C, 115, 20481 (2011)
  12. Wang Y, Zhang L, Wu Y, Zhong Y, Hu Y, Lou XW, Chem. Commun., 51, 6921 (2015)
  13. Olivera S, Venkatesh K, Reddy N, Jayanna BK, Inamuddin, Asiri AM, Rtimi S, Muralidhara HB, Environ. Technol. Innovation, 12, 160 (2018)
  14. Galan J, Rodriguez A, Gomez JM, Allen SJ, Walker GM, Chem. Eng. J., 219, 62 (2013)
  15. Tosheva L, Parmentier J, Valtchev V, Vix-Guterl C, Patarin J, Carbon, 43, 2474 (2005)
  16. Liu J, Yang T, Wang DW, Lu GQ, Zhao D, Qiao SZ, Nat. Commun., 4, 2798 (2013)
  17. Li M, Wu Q, Wen M, Shi J, Nanoscale Res. Lett., 4, 1365 (2009)
  18. Wang X, Jiang C, Hou B, Wang Y, Hao C, Wu J, Chemosphere, 206, 587 (2018)
  19. Ding L, Olesik SV, Chem. Mater., 17, 2353 (2005)
  20. Lu F, Huang C, You L, Wang J, Zhang Q, RSC Adv., 7, 23255 (2017)
  21. Qian HS, Han FM, Zhang B, Guo YC, Yue J, Peng BX, Carbon, 42, 761 (2004)
  22. Zhang T, Zhu C, Shi Y, Li Y, Zhu S, Zhang D, Mater. Lett., 205, 10 (2017)
  23. Shoichet MS, Li RH, White ML, Winn SR, Biotechnol. Bioeng., 50, 374 (1995)
  24. Morch YA, Donati I, Strand BL, Skjak-Braek G, Biomacromolecules, 7(5), 1471 (2006)
  25. Barnett BP, Arepally A, Stuber M, Arifin DR, Kraitchman DL, Bulte JWM, Nat. Protocols, 6, 1142 (2011)
  26. Kim J, Arifin DR, Muja N, Kim T, Gilad AA, Kim H, Arepally A, Hyeon T, Bulte JWM, Angew. Chem.-Int. Edit., 50, 2317 (2011)
  27. Shin BY, Cha BG, Jeong JH, Kim J, ACS Appl. Mater. Interfaces, 9, 31372 (2017)
  28. Yang X, Lu Z, Wu H, Li W, Zheng L, Zhao J, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 83, 195 (2018)
  29. Raymundo-Pinero E, Leroux F, Beguin F, Adv. Mater., 18(14), 1877 (2006)
  30. Lei Z, Zhai S, Lv J, Fan Y, An Q, Xiao Z, RSC Adv., 5, 77932 (2015)
  31. Cho K, Shin BY, Park HK, Cha BG, Kim J, RSC Adv., 4, 21777 (2014)
  32. Park J, An KJ, Hwang YS, Park JG, Noh HJ, Kim JY, Park JH, Hwang NM, Hyeon T, Nat. Mater., 3(12), 891 (2004)
  33. Huang KS, Yang CH, Lin YS, Wang CY, Lu K, Chang YF, Wang YL, Drug Deliv. and Transl. Res., 1, 289 (2011).
  34. Guerretta F, Magnacca G, Franzoso F, Ivanchenko P, Nistico R, Mater. Lett., 234, 339 (2019)
  35. Ross AB, Hall C, Anastasakis K, Westwood A, Jones JM, Crewe RJ, J. Anal. Appl. Pyrol., 91, 344 (2011)
  36. Li DM, Chen LM, Yi XJ, Zhang XW, Ye NH, Bioresour. Technol., 101(18), 7131 (2010)
  37. Soares JP, Santos JE, Chierice GO, Cavalheiro ETG, Ecletica Quimica, 29, 57 (2004)
  38. Holzwarth U, Gibson N, Nat. Nanotechnol., 6(9), 534 (2011)
  39. Bhattacharyya KG, Sengupta S, Sarma GK, Appl. Clay Sci., 99, 7 (2014)
  40. Inyinbor AA, Adekola FA, Olatunji GA, S. Afr. J. Chem., 62, 218 (2016)
  41. Chaudhary S, Sharma P, Renu, Kumar R, RSC Adv., 6, 62797 (2016)
  42. Giri SK, Das NN, Pradhan GC, Colloids Surf. A: Physicochem. Eng. Asp., 389, 43 (2011)
  43. Sinha A, Cha BG, Kim J, ACS Appl. Nano Mater., 1, 1940 (2018)
  44. Santhi M, Kumar PE, Int. J. Innov. Res. Sci. Eng. Technol., 4, 497 (2015)
  45. Pan X, Du Q, Zhou Y, Liu L, Xu G, Yan C, J. Nanosci. Nanotechnol., 18, 7231 (2018)