화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.37, No.5, 891-897, May, 2020
Solvo-hydrothermal synthesis of calcium phosphate nanostructures from calcium inositol hexakisphosphate precursor in water-ethanol mixed solutions
E-mail:
We report the synthesis and characterization of crystalline calcium phosphate (CaP) nanostructures from calcium inositol hexakisphosphate (CaIP6) precursor in water-ethanol mixed solutions. We show how these CaPs can be prepared by a solvo-hydrothermal reaction and determined their compositions and structures using a battery of material characterization techniques. Our results show that only the hydroxyapatite (HAP) and dicalcium phosphate anhydrous (DCPA) phases of CaP were present in the nanostructures produced in water-ethanol mixtures, and that HAP/DCPA ratio of the rod- and plate-shaped CaP nanostructures produced were affected by the amount of ethanol present in these mixtures. The described method can be used to improve morphological control of CaP-based biomaterials and has potential use in bone regenerative medicine.
  1. Combes C, Cazalbou S, Rey C, Minerals, 6, 34 (2016)
  2. Dorozhkin SV, Materials, 6, 3840 (2013)
  3. Epple M, Ganesan K, Heumann R, Klesing J, Kovtun A, Neumann S, Sokolova V, J. Mater. Chem., 20, 18 (2010)
  4. Habraken W, Habibovic P, Epple M, Bohner M, Mater. Today, 19, 69 (2016)
  5. Shen YQ, Zhu YJ, Chen FF, Jiang YY, Xiong ZC, Chen F, J. Mater. Chem. B, 6, 4985 (2018)
  6. Zhao J, Liu Y, Sun WB, Zhang H, Chem. Cent. J., 5, 1 (2011)
  7. Nagano M, Nakamura T, Kokubo T, Tanahashi M, Ogawa M, Biomaterials, 17, 1771 (1996)
  8. Surmenev RA, Surmeneva MA, Ivanova AA, Acta Biomater., 10, 557 (2014)
  9. Mi R, Liu Y, Chen X, Shao Z, Nanoscale, 8, 20096 (2016)
  10. Bose S, Tarafder S, Acta Biomater., 8, 1401 (2012)
  11. Wang KW, Zhu YJ, Chen XY, Zhai WY, Wang Q, Chen F, Chang JA, Duan YR, Chem. Asian J., 5, 2477 (2010)
  12. Yang LX, Yin JJ, Wang LL, Xing GX, Yin P, Liu QW, Ceram. Int., 38, 495 (2012)
  13. Delgado-Lopez JM, Iafisco M, Rodriguez-Ruiz I, Gomez-Morales J, J. Inorg. Biochem., 127, 261 (2013)
  14. Lin KL, Wu CT, Chang J, Acta Biomater., 10, 4071 (2014)
  15. Sadat-Shojai M, Khorasani MT, Jamshidi A, J. Cryst. Growth, 361, 73 (2012)
  16. Ito H, Oaki Y, Imai H, Cryst. Growth Des., 8, 1055 (2008)
  17. Jiang YY, Zhu YJ, Chen F, Wu J, Ceram. Int., 41, 6098 (2015)
  18. Eliaz N, Metoki N, Materials, 10, 334 (2017)
  19. Haider A, Haider S, Han SS, Kang IK, RSC Adv., 7, 7442 (2017)
  20. Fihri A, Len C, Varma RS, Solhy A, Coord. Chem. Rev., 347, 48 (2017)
  21. Tas AC, J. Am. Ceram. Soc., 92(12), 2907 (2009)
  22. Cai YR, Tang RK, J. Mater. Chem., 18, 3775 (2008)
  23. Xiao DQ, Tan Z, Fu YK, Duan K, Zheng XT, Lu X, Weng J, Ceram. Int., 40, 10183 (2014)
  24. Shamsuddin A, von Fraunhofer J, US Pattern Application Publication, US 2007/0212449 A1 (2007).
  25. Grases F, Ramis M, Costa-Bauza A, Urol. Res., 28, 136 (2000)
  26. Xiao DQ, Yang F, Zhou X, Chen Z, Duan K, Weng J, Feng G, RSC Adv., 7, 44371 (2017)
  27. He ZQ, Honeycutt CW, Zhang TQ, Bertsch PM, J. Environ. Qual., 35, 1319 (2006)
  28. Goto T, Kim IY, Kikuta K, Ohtsuki C, Ceram. Int., 38, 1003 (2012)
  29. Hao LJ, Yang H, Du SL, Zhao NR, Wang YJ, Mater. Lett., 131, 252 (2014)
  30. Dardouri M, Borges JP, Omrani AD, Ceram. Int., 43, 3784 (2017)
  31. Sun RX, Yang LL, Zhang YX, Chu F, Wang GY, Lv YP, Chen KZ, CrystEngComm, 18, 8030 (2016)
  32. Ganesan K, Epple M, New J. Chem., 32, 1326 (2008)
  33. Han JH, Chung SW, Appl. Chem. Eng., 29(6), 740 (2018)
  34. Yoshimura M, Sujaridworakun P, Koh F, Fujiwara T, Pongkao D, Ahniyaz A, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 24, 521 (2004)
  35. Larsen MJ, Thorsen A, Jensen SJ, Calcified Tissue Int., 37, 189 (1985)
  36. Gelsema W, De Ligny C, Remijnse A, Blijleven H, Recueil. des. Travaux. Chimiques. Des. Pays., 85, 647 (1966).
  37. Liu XY, Bioinspiration: from nano to micro scales, Springer, New York (2012).