화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.58, No.2, 257-265, April, 2020
Application of Flory-Treszczanowicz-Benson model and Prigogine-Flory-Patterson theory to Excess Molar Volume of Binary Mixtures of Ethanol with Diisopropyl Ether, Cyclohexane and Alkanes (C6-C9)
E-mail:,
Densities (ρ) for binary mixtures of ethanol (1) + diisopropyl ether (DIPE) or cyclohexane or alkane (C6-C9) (2) were measured at 298.15 K, 308.15 K and 318.15 K. The excess molar volume ( ) of binary mixtures was calculated using ρ data and correlated with Redlich-Kister polynomial equation. The V EM values for binary mixtures of ethanol (1) + cyclohexane or n-alkane (C6-C9) (2) were positive, whereas for ethanol (1) + DIPE (2) these were negative. The magnitude of V EM values follows the order: cyclohexane > n-nonane > n-octane > n-heptane > n-hexane > DIPE. The V EM values have been interpreted qualitatively and also quantitatively in terms of Flory-Treszczanowicz-Benson (FTB) model and Prigogine-Flory-Patterson (PFP) theory. The V EM values predicted using FTB model agree well with experimental V EM values at all mole fractions. But the PFP theory describes well data in ethanol-rich region (x1 > 0.5) for all binary mixtures and is able to predict the sign of V EM curve for ethanol-lean region (x1 < 0.5) except for ethanol (1) + nonane (2) mixtures.
  1. Canosa J, Rodriguez A, Tojo J, Fluid Phase Equilib., 156(1-2), 57 (1999)
  2. Gahlyan S, Rani M, Maken S, J. Mol. Liq., 199, 42 (2014)
  3. Zhou XM, Chen Y, Wang C, Guo JT, Wen CY, J. Chem. Thermodyn., 87, 13 (2015)
  4. Gahlyan S, Verma S, Rani M, Maken S, Asian J. of Chemistry, 30, 731-735(2018).
  5. Sim HW, Kim MG, Korean J. Chem. Eng., 33(1), 271 (2016)
  6. Lee MH, You SS, Korean J. Chem. Eng., 334, 2027 (2017)
  7. Dubey GP, Sharma M, J. Chem. Eng. Data, 52(2), 449 (2007)
  8. Lee KH, Gu JE, Oh HY, Park SJ, Korean J. Chem. Eng., 35(8), 1710 (2018)
  9. Contreras SM, J. Chem. Eng. Data, 46, 1149 (2001)
  10. Ulbig P, Bubolz M, Kornek C, Schulz S, J. Chem. Eng. Data, 42(3), 449 (1997)
  11. Cho JS, Lim JS, Kim JD, Lee YY, Chun HS, Korean Chem. Eng. Res., 29, 487 (1991)
  12. Kashyap P, Rani M, Tiwari DP, Park SJ, Korean J. Chem. Eng., 36(11), 1922 (2019)
  13. Atik Z, Lourddani K, J. Solution Chem., 35, 1453 (2006)
  14. Chen HW, Tu CH, J. Chem. Eng. Data, 51(1), 261 (2006)
  15. Estrada-Baltazar A, Iglesias-Silva GA, Caballero-Ceron C, J. Chem. Eng. Data, 58(12), 3351 (2013)
  16. Kim Y, Kim M, Korean Chem. Eng. Res., 42(4), 426 (2004)
  17. Rhim JN, Park SS, Korean Chem. Eng. Res., 13, 147 (1975)
  18. Kim J, Kim M, Korean Chem. Eng. Res., 44(5), 444 (2006)
  19. Riddick A, Bunger W, Sakano T, Physical Properties and Methods of Purification, Organic Solvents, vol. II. 1986, Wiley, New York.
  20. Jimenez E, Casas H, Segade L, Franjo C, J. Chem. Eng. Data, 45, 862 (2000)
  21. Ortega J, J. Chem. Eng. Data, 27, 312 (1982)
  22. Dash S, Pradhan S, Dalai B, Moharana L, Swain B, Physics and Chemistry of Liquids, 50, 735-749(2012).
  23. Aicart E, Tardajos G, Diaz Pena M, J. Chem. Eng. Data, 25, 140 (1980)
  24. Aucejo A, Burguet MC, Munoz R, Marques JL, J. Chem. Eng. Data, 40(1), 141 (1995)
  25. Aminabhavi TM, Patil VB, J. Chem. Eng. Data, 42(3), 641 (1997)
  26. Shekaari H, Zafarani-Moattar MT, Behrooz NJ, J. Chem. Thermodyn., 86, 188 (2015)
  27. Aminabhavi TM, Patil VB, Aralaguppi MI, Phayde HT, J. Chem. Eng. Data, 41(3), 521 (1996)
  28. Alonso E, Guerrero H, Montano D, Lafuente C, Artigas H, Thermochim. Acta, 52, 71 (2011)
  29. Kouris S, Panayiotou C, J. Chem. Eng. Data, 34, 200 (1989)
  30. Dubey GP, Sharma M, J. Mol. Liq., 142, 124 (2008)
  31. Orge B, Rodriguez A, Canosa JM, Marino G, Iglesias M, Tojo J, J. Chem. Eng. Data, 44, 1041 (1999)
  32. Dubey GP, Sharma M, J. Chem. Thermodyn., 40(6), 991 (2008)
  33. Gayol A, Iglesias M, Goenaga JM, Concha RG, Resa JM, J. Mol. Liq., 135, 105 (2007)
  34. Landaverde-Cortes DC, Iglesias-Silva GA, Ramos-Estrada M, Hall KR, J. Chem. Eng. Data, 53(1), 288 (2008)
  35. Aminabhavi TM, Gopalkrishna B, J. Chem. Eng. Data, 39(3), 529 (1994)
  36. Redlich O, Kister AT, Ind. Eng. Chem., 40, 345 (1948)
  37. Orge B, Iglesias M, Rodriguez A, Canosa JM, Tojo J, Fluid Phase Equilib., 133(1-2), 213 (1997)
  38. Gonzalez B, Calvar N, Dominguez A, Tojo J, J. Chem. Thermodyn., 39(2), 322 (2007)
  39. Kashyap P, Rani M, Gahlyan S, Tiwari DP, Maken S, J. Mol. Liq., 268, 303 (2018)
  40. Jeschke P, Schneider GM, J. Chem. Thermodyn., 10, 803 (1978)
  41. Patterson D, Delmas G, Discussions of the Faraday Society, 49, 98 (1970).
  42. Flory PJ, J. American Chemical Society, 87, 1833 (1965)
  43. Abe A, Flory P, J. American Chemical Society, 87, 1838 (1965)
  44. George J, Sastry NV, Int. J. Thermophys., 24, 1697 (2003)
  45. Vercher E, Orchilles AV, Miguel PJ, Martinez-Andreu A, J. Chem. Eng. Data, 52(4), 1468 (2007)
  46. Pineiro A, Amigo A, Bravo R, Brocos P, Fluid Phase Equilib., 173(2), 211 (2000)
  47. Garcia-Miaja G, Troncoso J, Romani L, Fluid Phase Equilib., 274(1-2), 59 (2008)
  48. Calvo E, Brocos P, Bravo R, Pintos M, Amigo A, Roux AH, Roux-Desgranges G, J. Chem. Eng. Data, 43(1), 105 (1998)
  49. Rani M, Maken S, Korean J. Chem. Eng., 30(8), 1636 (2013)
  50. Treszczanowicz AJ, Benson GC, Fluid Phase Equilib., 23, 117 (1985)
  51. Singh KC, Kalra KC, Maken S, Gupta V, Fluid Phase Equilib., 119(1-2), 175 (1996)
  52. Letcher TM, Domanska U, Mwenesongole E, Fluid Phase Equilib., 149(1-2), 323 (1998)