화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.30, No.4, 184-196, April, 2020
HSLA 강의 미세조직과 저온 샤르피 충격 특성에 미치는 탄소와 니켈의 영향
Effect of Carbon and Nickel on Microstructure and Low Temperature Charpy Impact Properties of HSLA Steels
E-mail:
In this study, effects of carbon and nickel on microstructure and low temperature Charpy impact properties of HSLA (high strength low alloy) steels are investigated. To understand the complex phase transformation behavior of HSLA steels with high strength and toughness before and after welding processes, three kinds of HSLA steels are fabricated by varying the carbon and nickel content. Microstructure analysis, low temperature Charpy impact test, and Vickers hardness test are performed for the base metals and CGHAZ (coarse-grain heat affected zone) specimens. The specimens with the lowest carbon and nickel content have the highest volume fraction of AF, the lowest volume fraction of GB, and the smallest GB packet size. So, the low temperature Charpy absorbed energy of the CGHAZ specimen is the highest. The specimens with increased carbon and nickel content have the lowest volume fraction of AF, the highest volume fraction of GB, and the largest GB packet size. So, the low temperature Charpy absorbed energy of the CGHAZ specimen is the lowest.
  1. Kim JC, Suh YC, Hwang SD, Shin SY, Korean J. Mater. Res., 28(8), 478 (2018)
  2. Cheng TC, Yu C, Yang TC, Huang CY, Lin HC, Shiue RK, Arch. Metall. Mater., 63, 167 (2018)
  3. Zhou YL. Jia T, Zhang XJ, Liu ZY, Misra RDK, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 626, 352 (2015)
  4. Liu DS, Li QL, Emi T, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci., 42, 1349 (2011)
  5. Callister WD, Rethwisch DG, Materials Science and Engineering, 9th ed., p.432, John Wiley & Sons, Inc., New York (2015).
  6. Easterling K, Introduction to the Physical Metallurgy of Welding, 2nd ed. p.126, Butterworth Heinemann, Oxford (1992).
  7. Li Y, Crowther DN, Green MJW, Mitchell PS, Baker TN, ISIJ Int., 41, 46 (2001)
  8. Schino AD, Nunzio PED, Mater. Lett., 186, 86 (2017)
  9. Hamada M, Fukada Y, Komiz Y, ISIJ Int., 35, 1196 (1995)
  10. Medina SF, Chapa M, Valles P, Quispe A, Vega MI, ISIJ Int., 39, 930 (1999)
  11. Chapa M, Medina SF, Lopez V, Fernandez B, ISIJ Int., 42, 1288 (2002)
  12. Schino AD, Guarnaschelli C, Mater. Lett., 63, 1968 (2009)
  13. Schino AD, Alleva L, Guagnelli M, Mater. Sci. Forum, 860, 715 (2012)
  14. Yu C, Yang TC, Huang CY, Shiue RK, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci., 47A, 4777 (2016)
  15. Dhua SK, Mukerjee D, Sarma DS, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci., 32A, 2259 (2001)
  16. Hwang B, Lee CG, Kim SJ, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci., 42A, 717 (2011)
  17. Yang TC, Huang CY, Cheng TC, Yu C, Shiue RK, Adv. Mater. Res., 936, 1312 (2014)
  18. Heigl G, Lengauer H, Hodnik P, Steel Res. Int., 79, 931 (2008)
  19. Baker TN, Mater. Sci. Technol., 25, 1083 (2009)
  20. Yan W, Shan YY, Yang K, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci., 37, 2147 (2006)
  21. Hulka K, Kern A, Schriever U, Mater. Sci. Forum, 500, 519 (2005)
  22. Shome M, Sarma DS, Gupta OP, Mohanty ON, ISIJ Int., 43, 1431 (2003)
  23. Sung HK, Shin SY, Hwang BC, Lee CG, Kim NJ, Lee SH, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 530, 530 (2011)
  24. Shome M, Gupta OP, Mohanty ON, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci., 35A, 985 (2004)
  25. Lee SE, Lee DH, Sohn SS, Kim WG, Um KK, Kim KS, Lee SH, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 697, 55 (2017)
  26. Song SY, Park MS, Yun JS, Korean J. Mater. Res., 29(4), 221 (2019)
  27. Offshore Standards for Design of Offshore Steel Structures, General-LRFD method, DNVGL-OS-C101, DNV.GL, p.1-85 (2011).
  28. Araki T, Atlas for Bainitic Microstructure, p. 1, ISIJ, Tokyo, Japan (1992).
  29. Krauss G, Thompson SW, ISIJ Int., 35, 937 (1995)
  30. Bhadeshia HKDH, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 378, 34 (2004)
  31. Deng D, Kiyoshima S, Comput. Mater. Sci., 62, 23 (2012)
  32. Qiu H, Enoki M, Kawaguchi Y, Kishi T, ISIJ Int., 40, 34 (2000)
  33. Andrews KW, J. Iron Steel Inst., 2037, 721 (1965)
  34. Kung CY, Rayment JJ, Metall. Trans. A, 13A, 328 (1982)
  35. Kirkaldy S, Venugopalan D, Metall. Soc. of AIME, Philadelphia (1983).
  36. Brimacombe JK, Can. Metall. Q., 15, 163 (1976)
  37. Thomas BG, Samarasekera IV, Brimacombe JK, Metall. Trans. B, 15B, 307 (1984)
  38. Thomas BG, Samarasekera IV, Brimacombe JK, Metal. Trans. B, 18B, 131 (1987)
  39. Kim BC, Lee S, Kim NJ, Lee DY, Metall. Trans. A, 22A, 139 (1991)
  40. Yurioka N, Weld. World, 35, 375 (1995)
  41. Huang G, Wan XL, Wu KM, Zhao HZ, Misra RDK, Metals, 8, 718 (2018)
  42. Porter DA, Easterling KE, Sherif MY, Taylor & Francis Group, Abingdon-on-Thames, New York (2008).
  43. Zhao H, Palmiere E, Mater. Charac., 145, 479 (2018)
  44. Biss V, Cryderman RL, Metal. Trans., 2, 2267 (1971)
  45. Jun HJ, Kang JS, Park CG, Mat. Sci. Eng., accepted at 2nd May 2005.