화학공학소재연구정보센터
Applied Biochemistry and Biotechnology, Vol.190, No.1, 18-29, 2020
Coenzyme Binding Site Analysis of an Isopropanol Dehydrogenase with Wide Substrate Spectrum and Excellent Organic Solvent Tolerance
NAD(P)H-dependent enzymes are ideal biocatalysts for the industrial production of chiral compounds, such as chiral alcohols, chiral amino acids, and chiral amines; however, efficient strategies for the regeneration of coenzyme are expected as costly of the coenzymes. Herein, a solvent-tolerant isopropanol dehydrogenase (IDH) showing lower similarity (37%) with other proteins was obtained and characterized. The enzyme exhibits high catalysis ability of its substrates methanol, ethanol, ethylene glycol, glycerol, isopropanol, n-butanol, isobutanol, and acetone. And it has good adaptability in organic solvents (isopropanol, acetonitrile, acetone, and acetophenone). Interaction force and the corresponding amino acid residues between IDH and NAD(+) or NADP(+) were parsed by docking. The wide substrate spectrum, excellent organic solvent tolerance, and good biocatalytic activity make the excavated enzyme a promising biocatalyst for the production of chiral compounds industrially and the construction of coenzyme regeneration systems in aqueous organic phase or organic phase.