화학공학소재연구정보센터
Biochemical and Biophysical Research Communications, Vol.524, No.4, 983-989, 2020
Upregulation of lncRNA-NONRATT021203.2 in the dorsal root ganglion contributes to cancer-induced pain via CXCL9 in rats
Cancer-induced pain (CIP) is a kind of chronic pain that occurs during cancer progression over time. However, the mechanisms are largely unknown, and clinical treatment remains challenging. LncRNAs have been reported to play critical roles in various biological processes, including chronic pain. The aim of our study was to investigate whether lncRNAs participate in the development of CIP by regulating the expression levels of some molecules related to pain modulation. The CIP model was established by injectingWalker 256 mammary gland tumor cells into the tibial canal of rats. In this study, we found that lncRNA-NONRATT021203.2 was increased in the CIP rats and that lncRNA-NONRATT021203.2-siRNA could relieve hyperalgesia in these rats. For elucidation of the underlying mechanism, we showed that lncRNA-NONRATT021203.2 could target C-X-C motif chemokine ligand 9 (CXCL9), which was increased in the CIP rats, and that CXCL9-siRNA could relieve hyperalgesia. At the same time, silencing lncRNA-NONRATT021203.2 expression decreased the mRNA and protein levels of CXCL9. Immunofluorescence analysis showed that CXCL9 was mainly expressed in the CGRP-positive and IB4-positive DRG neurons. Further research showed that lncRNA-NONRATT021203.2 and CXCL9 were colocalized in the DRG neurons. Our data suggested that lncRNA-NONRATT021203.2 participated in the CIP in rats and likely mediates the upregulation of CXCL9. The present study provided us with a new potential target for the clinical treatment of cancer-induced pain. (C) 2020 Elsevier Inc. All rights reserved.