Biochemical and Biophysical Research Communications, Vol.524, No.1, 43-49, 2020
Overexpression of COX5A protects H9c2 cells against doxorubicin-induced cardiotoxicity
Mitochondrial dysfunction plays a pivotal role in doxorubicin (DOX)-induced cardiomyopathy. Cytochrome c oxidase subunit 5A (COX5A) is a nuclear-encoded subunit of the terminal oxidase involved in mitochondrial electron transport. Although COX5A appears to play a key role in modulating the physiological activity of COX and involve in energy metabolism, the involvement of COX5A in DOX-induced cardiotoxicity remains unclear. In this study, we showed that COX5A was significantly downregulated by DOX treatment of H9c2 cells. Overexpression of COX5A in H9c2 cells effectively attenuated DOX-induced apoptosis. Meanwhile, DOX-induced decrease in mitochondrial membrane potential could be reserved by COX5A overexpression. Furthermore, COX5A overexpression relieved the DOX-induced suppression of mitochondrial respiration, due an increase in basal respiration, maximal respiration, ATP production, and spare respiratory capacity. These findings indicate that up-regulation of COX5A may inhibit the apoptosis and alleviate the mitochondrial dysfunction of DOX-treated H9c2 cells. Thus, COX5A may have potential for clinical use as a therapeutic target in DOX-induced cardiotoxicity. (C) 2020 Elsevier Inc. All rights reserved.