화학공학소재연구정보센터
Biomacromolecules, Vol.21, No.2, 349-355, 2020
Design of Degradable Polyphosphoester Networks with Tailor-Made Stiffness and Hydrophilicity as Scaffolds for Tissue Engineering
In the recent decades, biodegradable and biocompatible polyphosphoesters (PPEs) have gained wide attention in the biomedical field as relevant substitutes for conventional aliphatic polyesters. These amorphous materials of low glass transition temperature offer promise for the design of soft scaffolds for tissue engineering. Advantageously, the easy variation of the nature of the lateral pendant groups of PPEs allows the insertion of pendent unsaturations valuable for their further cross-linking. In addition, varying the length of the pendent alkyl chains allows tuning their hydrophilicity. The present work aims at synthesizing PPE networks of well-defined hydrophilicity and mechanical properties. More precisely, we aimed at preparing degradable materials exhibiting identical hydrophilicity but different mechanical properties and vice versa. For that purpose, PPE copolymers were synthesized by ring-opening copolymerization of cyclic phosphate monomers bearing different pendent groups (e.g., methyl, butenyl, and butyl). After UV irradiation, a stable and well-defined cross-linked material is obtained with the mechanical property of the corresponding polymer films controlled by the composition of the starting PPE copolymer. The results demonstrate that cross-linking density could be correlated with the mechanical properties, swelling behavior, and degradation rate of the polymers network. The polymers were compatible to human skin fibroblast cells and did not exhibit significant cytotoxicity up to 0.5 mg mL(-1). In addition, degradation products appeared nontoxic to skin fibroblast cells and showed their potential as promising scaffolds for tissue engineering.