Chinese Journal of Chemical Engineering, Vol.28, No.1, 152-157, 2020
Isomerization of n-pentane catalyzed by amide-AlCl3-based ionic liquid analogs with various additives
The isomerization of n-pentane to generate high-quality blending components for clean gasoline was catalyzed by several amide-AlCl3-based ionic liquid (IL) analogs with various amides as donor molecules. The catalytic performance of these IL analogs was evaluated in a magnetic agitated autoclave operated in batch mode. IL analog based n-methylacetamide (NMA)-AlCl3 with the amide/AlCl3 molar ratio of 0.65 showed excellent performance toward n-pentane isomerization because 0.65NMA-1.0AlCl(3) had a low viscosity and bidentate coordination structure. The influences of reaction time, reaction temperature, and stirring speed on the catalytic performance were also investigated Optimal reaction conditions comprised the reaction time of 1 h, the reaction temperature of 40 degrees C, and the stirring speed of 1500 r.min(-1). Under optimal condition, the n-05 conversion, research octane number (RON) increment, total liquids yield, and isoparaffin yield in isomerized oil were 56.80%, 13.51, 89.90 wt%, and 4432 wt%, respectively. A new mathematical model was constructed to predict the relationships among RON increment, RON increment/n-05 conversion ratio, and n-05 conversion. The new model indicated that an appropriate conversion per pass of n-05 did not exceed 50%-55%. Various cycloparallin additives were used to improve the catalytic performance of 0.65NMA-1.0AlCl(3). The n-05 conversion increased from 56.80% to 6732%. The RON increment, total liquids yield, and isoparaffin yield reached 17.83, 97.36 wt%. and 63.74 wt%, respectively. (C) 2019 The Chemical Industry and Engineering Society of China, and Chemical Industry Press Co., Ltd. All rights reserved.