Current Applied Physics, Vol.20, No.5, 611-618, 2020
Microstructure and dielectric study of pure BST and doped BSTF ceramic materials by broadband dielectric spectroscopy
Pure BST and doped BSTF (with BSTF2: Fe2O3 2 wt % and BSTF4: Fe2O3 4 wt %) ceramics were prepared by solid state reaction. XRD pattern showed the different phases were formed depend on the weight percent of Fe2O3. The crystal size and lattice parameters increased while the lattice strain decreased. The topography of the sintered samples shows increase of the grain size with increasing Fe2O3 ratio and hence enhances the compaction of ceramics. Broadband dielectric spectroscopy was employed to investigate the effect of magnetite nanoparticle on the dielectric properties of the pure BST ceramic. The interfacial polarization and the conductivity contribution reflect the high values of permittivity and its gradual increase as frequency decreases. The two BSTF samples show relaxation peak dynamic originated from presence of immobile species/electrons at low temperatures and defects/vacancies results from the formation of oxygen vacancies originates from the spontaneous change in oxidation states of Fe ions (Fe3+/Fe2+) at high temperatures. The relaxation rate obeys Arrhenius law at high temperatures in case of BST sample with activation energy 225 kJ/mol. This high value of activation energy at higher temperatures reflects and confirms the slowed down of the dynamics at the interphase and the decoupling nature of the OH-dynamic and the interfacial polarization.