International Journal of Hydrogen Energy, Vol.45, No.15, 8887-8898, 2020
Preparation and characterization of copper oxide particles/polypyrrole (Cu2O/PPy) via electrochemical method: Application in direct ethanol fuel cell
The electrocatalytic performance of Polypyrrole-Copper oxide particles modified carbon paste electrode (Cu2O/PPy/CPE) for electrocatalytic oxidation of ethanol was reported for the first time in alkaline media. The composite Cu2O/PPy was prepared using a facile approach consisting on the deposition of Polypyrrole film on CPE using galvanostatic mode then followed by the deposition of Copper particles at a constant potential. Scanning electron spectroscopy (SEM), infrared spectroscopy (FTIR), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were employed to characterize the structural and electrochemical properties of the Cu2O/PPy/CPE and to explain the mechanism of electrooxidation of ethanol. The experimental parameters that influence the electrooxidation of ethanol were investigated and optimized. Our findings suggest that the electrodeposition of Copper particles on Polypyrrole film enhanced the catalytic activity towards the ethanol oxidation with a peak current density of 2.25 mA cm(-2) at 0.8 V vs Ag/ AgCl, which is 2.6 times higher than the peak current density obtained by PPy/CPE electrode. It important to note that the saturation limit reaches a value of 5 M. To summarize, the good catalytic activity, stability and easy preparation make the Cu2O/PPy composite as an excellent electrocatalyst for ethanol oxidation. (C) 2020 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
Keywords:Copper oxide particles;Polypyrrole;Carbone paste electrode;Ethanol oxidation reaction;Fuel cells