Journal of Colloid and Interface Science, Vol.566, 505-512, 2020
Facile synthesis of Nafion-supported Pt nanoparticles with ultra-low loading as a high-performance electrocatalyst for hydrogen evolution reaction
x%Pt-Naf-CV (Pt-Nafion-Cyclic Voltammetry) catalysts with homogeneously distributed platinum nanoparticles and ultra-low Pt loading are successfully synthesized by using a facile potential cycling approach. The as-synthesized 0.8%Pt-Naf-CV catalyst exhibits an enhanced electrocatalytic activity for hydrogen evolution reaction (HER) in 0.5 M H2SO4 solution, which obtains a low overpotential of 34 mV at 10 mA cm(-2). The linear sweep voltammetry (LSV) curve of 0.8%Pt-Naf-CV catalyst is almost consistent with that of commercial Pt/C. However, the 0.8%Pt-Naf-CV catalyst displays a more excellent stability and durability in comparison with commercial Pt/C. Besides, the Pt loading of Pt/C (Pt-10 wt%) is about 10 times that of 0.8%Pt-Naf-CV catalyst. The improved electrocatalytic performances are derived from the synergistic effects of Pt and Nafion. The Nafion plays a significant role as a dispersant, carrier and structure directing agent on the morphology and size of the Pt catalyst. This result contributes a promising method to enhance the catalytic activity and reduce the amount of Pt. (C) 2019 Elsevier Inc. All rights reserved.