화학공학소재연구정보센터
Journal of Physical Chemistry A, Vol.124, No.5, 1053-1061, 2020
Two-Dimensional Electronic Spectroscopy Using Rotating Optical Flats
In two-dimensional electronic spectroscopy (2DES), precise control of the arrival time of ultrashort laser pulses is critical to correlating the molecular states that are accessed in the experiment. In this work, we demonstrate a 2D electronic spectrometer design with an interferometric phase stability of similar to lambda/250 at 600 nm. First, we present a new method for controlling pulse delay times based on transmission through pairs of optical flats rotated perpendicular to the beam propagation direction. Second, the calibration methods required to achieve adequate timing precision are also reported. Compared to existing designs using translating wedges, the rotating optical flats can achieve equivalent optical delay with a shorter path length in glass, reducing errors due to spectral dispersion of the broadband laser pulses used in 2DES. Our approach presents a simple, low-cost technique for multidimensional optical spectroscopy that is capable of resolving complex light-induced dynamics.