Process Biochemistry, Vol.92, 138-148, 2020
In vitro and in vivo anticandidal efficacy of green synthesized gold nanoparticles using Spirulina maxima polysaccharide
This study, for the first time, demonstrated an unprecedented approach for the green synthesis of gold (Au) nanoparticles (NPs) using the polysaccharide of Spirulina maxima as a reducing agent. Time-kill kinetic analysis was used to evaluate the antifungal activity of the green synthesized Au NPs against the pathogenic Candida albicans (C. albicans). The minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) were found to be 32 mu g/mL and 64 mu g/mL, respectively. Ultra-structural analysis indicated prominent damage on cell wall of the C. albicans after Au NPs treatment, and suggested that the treatment could increase the membrane permeability and disintegration of cells leading to cellular death. The results of propidium iodide (PI) uptake assay showed the higher level of cell death in Au NPs treated C. albicans cells, further confirming the loss of plasma membrane integrity. Cytotoxicity analysis of Au NPs on HEK293T and A549 cells showed no cytotoxic effect up to 64 mu g/mL of Au NPs concentration, indicating the potential use in in vivo studies. Also, the recovery of C. albicans infected zebrafish after Au NPs therapy suggest green synthesized Au NPs from S. maxima polysaccharide as a prospective anticandidal agent.
Keywords:Gold nanoparticles;Green synthesis;Spirulina maxima;Antifungal activity;Candida albicans;Biocompatibility