화학공학소재연구정보센터
Renewable Energy, Vol.150, 334-341, 2020
Direct-methane solid oxide fuel cells with an in situ formed Ni-Fe alloy composite catalyst layer over Ni-YSZ anodes
Coking on Ni surfaces limits the direct application of methane-based fuels in SOFCs with Ni-cermet anodes. Loading an anodic catalytic layer with a high catalytic activity for CH4 conversion can effectively protect the Ni-based anode from coking and increase the cell durability. In this work, a Ni-Fe alloy composite catalyst was prepared by reducing perovskite La0.7Sr0.3Fe0.8Ni0.2O3-delta (LSFN) and then evaluating its catalytic activity in the partial oxidation of CH4. The catalyst was applied on a conventional Ni-8 mol.% Y-stabilized ZrO2 (YSZ) anode for methane SOFCs using two methane-containing fuels (97% CH4-3% H2O and 30% CH4-70% air). The catalyst-modified cells showed much higher performances and durability than the conventional cell using a Ni-YSZ anode, indicating the potential application for direct-methane SOFCs. (C) 2020 Elsevier Ltd. All rights reserved.