화학공학소재연구정보센터
Solar Energy, Vol.201, 219-226, 2020
Effect of Na doping on the performance and the band alignment of CZTS/CdS thin film solar cell
Alkali doping can suppress deleterious antisite defects in kesterite Cu2ZnSnS4 (CZTS) and improve the opencircuit voltage. In this study, the effects of light Na-doping on the performance and the band alignment of CZTS/CdS thin-film solar cells were investigated. CZTS:Na thin films were fabricated by the spin coating with 10% Na doping on the surface of CZTS. The Na-doping led to the narrower FWHM and larger grain size. The hole concentration and the conductivity were improved due to the NaZn shallow acceptor defects. In addition, Nadoping can improve the band alignment of absorber/buffer interface and inhibit SRH recombination by the Na passivation effect and the suppression of SnZn defects. The typical cliff-like conduction band offset (CBO) was reduced from 0.25 eV in CZTS:Na/CdS to 0.1 eV in CZTS/CdS heterojunction. CZTS:Na device exhibited a higher Voc of 653 mV than that of CZTS/CdS device. The maximum conversion efficiency reached 7.46%, increased by 44% after Na-doping. These results clarify the effect of Na-doping on the band structure of the heterojunction in CZTS solar cells and support a new aspect that synthesis of a surface-doping CZTS:Na absorber has great potential for future research.