Journal of Industrial and Engineering Chemistry, Vol.86, 136-143, June, 2020
Maximizing ammonium and phosphate recovery from food wastewater and incinerated sewage sludge ash by optimal Mg dose with RSM
E-mail:
Nitrogen (N) and phosphorus (P) removal and recovery as struvite from various waste streams have drawn much attentions for environmentally friendly and economically competitive fertilizer production. In this study, integrated approach of using food wastewater (FW) and incinerated sewage sludge ash (ISSA) as the alternative N and P sources and optimum Mg dosage were investigated for the first time to achieve maximal nutrient recovery as struvite (MgNH4PO4-6H2O). Response surface methodology (RSM) successfully established the optimum condition for the maximum recovery of PO4 3- -P (97.7%), NH4 +-N (74.8%), and Mg2+ (95.5%) as precipitate at pH 9.63 and molar ratio of PO4 3- -P:NH4 +-N:Mg2+ of 1:0.6:1.59. The recovered precipitate mostly consists of struvite (72.6%) and shows high P-bioavailability (98.8%) with very low heavy metals content indicating a high performance fertilizer. Moreover, economic analysis highlights that the struvite production pathway could gain $149.1/m3 of FW to move forwards for economical struvite production.
Keywords:Food waste;Incinerated sewage sludge ash;N & P recovery;Response surface methodology;Optimization of struvite crystallization
- Cooper J, Lombardi R, Boardman D, Carliell-Marquet C, Resour. Conserv. Recycl., 57, 78 (2011)
- Withers P, Neal C, Jarvie H, Doody D, Sustainability, 6, 5853 (2014)
- Gonzalez-Ponce R, Lopez-de-Sa EG, Plaza C, Hort. Sci, 44, 426 (2009)
- Kim SH, Han SK, Shin HS, Int. J. Hydrog. Energy, 29(15), 1607 (2004)
- Chan MT, Selvam A, Wong JWC, Bioresour. Technol., 200, 838 (2016)
- Lee MS, Kim DJ, J. Ind. Eng. Chem., 51, 64 (2017)
- Jeon S, Kim DJ, J. Ind. Eng. Chem., 58, 216 (2018)
- Xu H, He P, Gu W, Wang G, Shao L, J. Environ. Sci., 24, 1533 (2012)
- Zin MMT, Kim DJ, Proc. Saf. Environ. Prot., 126, 242 (2019)
- Li B, Boiarkina I, Yu W, Huang HM, Munir T, Wang GQ, Young BR, Sci. Total Environ., 648, 1244 (2018)
- Kataki S, West H, Clarke M, Baruah DC, Resour. Conserv. Recycl., 107, 142 (2016)
- Zhou S, Wu Y, Environ. Sci. Pollut. Res. Int., 19, 347 (2012)
- Carballa M, Moerman W, De Windt W, Grotaerd H, Verstraete W, J. Chem. Technol. Biotechnol., 84(1), 63 (2009)
- Kim D, Min KJ, Lee K, Yu MS, Park KY, Environ. Eng. Res., 22, 12 (2016)
- Zhang H, Gong W, Luo X, Xie B, Li G, Liang H, Environ. Eng. Sci., 36, 102 (2018)
- Andersen KJ, Kisser MI, Digestion of Solid Matrices-Desk study Horizontal, Eurofins A/A, Denmark, pp.25 2004.
- APHA, Standard Methods for the Examination of Water and Wastewater, American Public Health Association, Washington, DC, 2005.
- Vogel T, Eichler-Lobermann B, Nelle M, Plant Soil Environ., 63, 475 (2017)
- Bhuiyan MIH, Mavinic D, Koch F, Chemosphere, 70, 1347 (2008)
- Huchzermeier MP, Tao W, Water Environ. Res., 84, 34 (2012)
- Zhao QB, Ma JW, Zeb I, Yu L, Chen SL, Zheng YM, Frear C, Chem. Eng. J., 279, 31 (2015)
- Crutchik D, Garrido J, Water Sci. Technol., 64, 2460 (2011)
- Le Corre KS, Valsami-Jones E, Hobbs P, Parsons SA, Environ. Sci. Technol., 39, 433 (2009)
- Lafuente B, Downs R, Yang H, Stone N, the RRUFF project in “Highlights in mineralogical crystallography”, pp.1Berlin 2015.
- Kirinovic E, Leichtfuss AR, Navizaga C, Zhang H, Christus JDS, Baltrusaitis J, ACS Sustain. Chem. Eng., 5, 1567 (2017)
- Bekiaris G, Peltre C, Jensen LS, Bruun S, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 168, 29 (2016)
- Vogel C, Kohl A, Adams C, Appl. Spectrosc., 65, 265 (2011)
- Miller A, Wilkins CH, Anal. Chem., 24, 1253 (1952)
- Li H, Ye Z, Lin Y, Wang F, Water Sci. Technol., 65, 2091 (2012)