Journal of Industrial and Engineering Chemistry, Vol.86, 167-177, June, 2020
Hydrogen generation from catalytic hydrolysis of sodium borohydride by a Cu and Mo promoted Co catalyst
E-mail:
Catalytic hydrolysis of chemical hydrides with the use of NaBH4 is a safe and effective way to provide hydrogen fuel for new energy vehicles and portable electronic devices. Herein we developed a Cu and Mo promoted Co hierarchical composites (Co1-xCuxMoO4) for hydrolysis of NaBH4 via an easy synthesis route. FESEM analysis depicts that the morphology of Co1-xCuxMoO4 hierarchical composites varied significantly from irregular microsphere to marigold microsphere to rose like morphology with the increase in Cu (x) ratio with respect to Co (1 - x). Flower-like morphological architecture and crystal configuration empower the supported catalyst to exhibit a remarkable catalytic activity and outstanding catalytic activity was obtained for marigold-like Co0.9Cu0.1MoO4 catalyst with an H2 generation rate of 1005.7 mL min-1 g-1, which confirms existence of synergistic effect between Co, Cu and Mo. Lower loading of Cu in Co1-xCuxMoO4 supported the active sites of Co to increase its catalytic activity. Additionally, the catalyst exhibits good recyclability after five successive runs of hydrolytic reaction, making it a robust catalyst for hydrolysis of NaBH4 and could be considered as a potential catalyst for portable hydrogen fuel systems.
Keywords:Hierarchical composites;Marigold-like microsphere;Synergistic effect;Hydrogen production;Sodium borohydride
- Krishnan P, Advani SG, Prasad AK, Appl. Catal. B: Environ., 86(3-4), 137 (2009)
- Demirci UB, Miele P, Phys. Chem. Chem. Phys., 16(15), 6872 (2014)
- Modisha PM, Ouma CNM, Garidzirai R, Wasserscheid P, Bessarabov D, Energy Fuels, 33(4), 2778 (2019)
- Liu C, Li F, Lai-Peng M, Cheng HM, Adv. Mater., 22(8), 28 (2010)
- Lee J, Shin H, Choi KS, Lee J, Choi JY, Yu HK, Int. J. Hydrog. Energy, 44(5), 2943 (2019)
- Huang YH, Su CC, Wang SL, Lu MC, Energy, 46(1), 242 (2012)
- Bozkurt G, Ozer A, Yurtcan AB, Energy, 180, 702 (2019)
- Tuan DD, Lin KYA, Chem. Eng. J., 351, 48 (2018)
- Bai Y, Wu C, Wu F, Yi B, Mater. Lett., 60(17-18), 2236 (2006)
- Guella G, Zanchetta C, Patton B, Miotello A, J. Phys. Chem. B, 110(34), 17024 (2006)
- Larichev YV, Netskina OV, Komova OV, Simagina VI, Int. J. Hydrog. Energy, 35(13), 6501 (2010)
- Eckenhoff WT, Coord. Chem. Rev., 373, 295 (2018)
- Jiang HL, Akita T, Xu Q, Chem. Commun., 47(39), 10999 (2011)
- Singh AK, Xu Q, ChemCatChem, 5(3), 652 (2013)
- Yao Q, Lu ZH, Wang Y, Chen X, Feng G, J. Phys. Chem. C, 119(25), 14167 (2015)
- Bulut A, Yurderi M, Ertas IE, Celebi M, Kaya M, Zahmakiran M, Appl. Catal. B: Environ., 180, 121 (2016)
- Mazumder V, Chi M, Mankin MN, Liu Y, Metin O, Sun D, More KL, Sun S, Nano Lett., 12(2), 1102 (2012)
- Wei YS, Meng W, Wang Y, Gao YX, Qi KZ, Zhang K, Int. J. Hydrog. Energy, 42(9), 6072 (2017)
- Patel N, Fernandes R, Miotello A, J. Catal., 271(2), 315 (2010)
- Fernandes R, Patel N, Miotello A, Calliari L, Top. Catal., 55(14-15), 1032 (2012)
- Wang Y, Wang D, Zhao CC, Meng W, Zhao T, Cao ZQ, Zhang K, Bai SC, Li GD, Int. J. Hydrog. Energy, 44(21), 10508 (2019)
- Zhao YC, Ning Z, Tian JN, Wang HW, Liang XY, Nie SL, Yu Y, Li XX, J. Power Sources, 207, 120 (2012)
- Guo D, Zhang H, Yu X, Zhang M, Zhang P, Li Q, Wang T, J. Mater. Chem. A, 1(24), 7247 (2013)
- Du D, Lan R, Xu W, Beanland R, Wang H, Tao S, J. Mater, Chem. A, 4(45), 17749 (2016)
- Liu Z, Yuan C, Teng F, J. Alloy. Compd., 781, 460 (2019)
- Leyzerovich NN, Bramnik KG, Buhrmester T, Ehrenberg H, Fuess H, J. Power Sources, 127(1-2), 76 (2004)
- Rahulan KM, Flower NAL, Sujatha RA, Padmanathan N, Gopalakrishnan C, J. Mater. Sci. Mater. Electron., 29(2), 1504 (2018)
- Bahmani F, Kazemi SH, Kazemi H, Kiani MA, Feizabadi SY, J. Alloy. Compd., 784, 500 (2019)
- Yuan Y, Yu B, Shi Y, Ma C, Song L, Hu W, Hu Y, Compos. A Appl. Sci. Manuf., 112, 142 (2018)
- Yu MQ, Jiang LX, Yang HG, Chem. Commun., 51(76), 14361 (2015)
- Brabers VAM, van Setten F, J. Phys. D-Appl. Phys., 16(9), L169 (1983)
- Ghosh D, Giri S, Das CK, Nanoscale, 5(21), 10428 (2013)
- Su YZ, Xiao K, Li N, Liu ZQ, Qiao SZ, J. Mater. Chem. A, 2(34), 13845 (2014)
- Deonikar VG, Mujmule RB, Patil DR, Kim H, Sci. Total Environ., 675, 325 (2019)
- Deonikar VG, Patil SS, Tamboli MS, Ambekar JD, Kulkarni MV, et al., Phys. Chem. Chem. Phys., 19(31), 20541 (2017)
- Geng X, Ai Y, Shen G, Prog. Nat. Sci. Mater. Int., 26(3), 243 (2016)
- Lyu F, Bai Y, Li Z, Xu W, Wang Q, Mao J, Wang L, Zhang X, Yin Y, Adv. Funct. Mater., 27(34), 170232 (2017)
- Chaudhari NS, Warule SS, Kale BB, RSC Adv., 4(24), 12182 (2014)
- Liu BB, Liu XJ, Liu JY, Feng CJ, Li Z, Li C, Gong YY, Pan LK, Xu SQ, Sun CQ, Appl. Catal. B: Environ., 226, 234 (2018)
- Deonikar VG, Rathod PV, Pornea AM, Kim H, J. Environ. Manage., 256, 109930 (2020)
- Deonikar VG, Reddy KK, Chung WJ, Kim H, J. Photochem. Photobiol. A-Chem., 368, 168 (2019)
- Soltys EV, Urazov KK, Kharlamova TS, Vodyankina OV, Kinet. Catal., 59(1), 58 (2018)
- Lu D, Liao J, Li H, Ji S, Pollet BG, ACS Sustain. Chem. Eng., 7(19), 16474 (2019)
- Tomboc GRM, Tamboli AH, Kim H, Energy, 121, 238 (2017)
- Tamboli AH, Chaugule AA, Sheikh FA, Chung WJ, Kim H, Energy, 89, 568 (2015)
- Retnamma R, Novais AQ, Rangel CM, Int. J. Hydrog. Energy, 36(16), 9772 (2011)
- Hung AJ, Tsai SF, Hsu YY, Ku JR, Chen YH, Yu CC, Int. J. Hydrog. Energy, 33(21), 6205 (2008)
- Li F, Arthur EE, La D, Li QM, Kim H, Energy, 71, 32 (2014)
- Li F, Li Q, Kim H, Chem. Eng. J., 210, 316 (2012)