화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.86, 232-243, June, 2020
Novel combinatorial extensions to breakthrough curve modeling of an adsorption column - Depth filtration hybrid process
E-mail:
This work introduces novel scenarios for the breakthrough curve modeling of an adsorption column/ depth filtration hybrid system. Four well-known theoretical breakthrough models including Thomas, Adams-Bohart, Yoon-Nelson, and BDST were employed to describe the normalized concentration profiles. In the first approach, the theoretical models were combined for better estimation of the breakthrough curves and the Thomas/Yoon.Nelson and Thomas/BDST combinations were obtained as the best extensions. In the second approach, an adsorption-transport model was developed for the depth filter to obtain the transient concentration gradient across the filter medium thickness. The model was then combined with the theoretical breakthrough models to predict the adsorption column breakthrough curves. Results revealed that a decrease in the feed flowrate and filter pore size could intensify the concentration polarization on the filter surface. Both model extensions could successfully approximate the breakthrough curves of the hybrid system with more than 99% agreement with the experimental data, while the prediction accuracy of the original breakthrough models seldom exceeds 93%.
  1. Salehi E, Askari M, Aliee MH, Goodarzi M, Mohammadi M, J. Clean Prod., 236, 117664 (2019)
  2. Vimonses V, Jin B, Chow CW, Saint C, Water Res., 44, 5385 (2010)
  3. Madaeni SS, Salehi E, Membrane-Adsorption Integrated Systems/Processes, Wiley Online Library, pp.343-366 2015.
  4. Boudaoud A, Djedid M, Benalia M, Ad C, Bouzar N, Elmsellem H, Sci. Study Res. Chem. Chem. Eng. Biotechnol. Food Ind., 18, 391 (2017).
  5. Hilbrandt I, Shemer H, Ruhl AS, Semiat R, Jekel M, Sep. Purif. Technol., 221, 23 (2019)
  6. Hao L, Wang N, Wang C, Li G, Chemosphere, 202, 768 (2018)
  7. Shemer H, Melki-Dabush N, Semiat R, Environ. Sci. Pollut. Res., 1 (2019).
  8. Lin SH, Hsiao RC, Juang RS, J. Hazard. Mater., 135(1-3), 134 (2006)
  9. Bryjak M, Wolska J, Kabay N, Desalination, 223(1-3), 57 (2008)
  10. Nur T, Loganathan P, Johir MAH, Kandasamy J, Vigneswaran S, Sep. Purif. Technol., 191, 286 (2018)
  11. Bade R, Lee SH, Jo S, Lee HS, Lee SE, Desalination, 229(1-3), 264 (2008)
  12. Sharma V, Kumar RV, Pakshirajan K, Pugazhenthi G, Powder Technol., 321, 259 (2017)
  13. Xavier ALP, Adarme OFH, Furtado LM, Ferreira GMD, da Silva LHM, Gil LF, Gurgel LVA, J. Colloid Interface Sci., 516, 431 (2018)
  14. Elmsellem H, Harit T, Aouniti A, Malek F, Riahi A, Chetouani A, Hammouti B, Prot. Met. Phys. Chem. Surf., 51, 873 (2015)
  15. Sivarajasekar N, Balasubramani K, Mohanraj N, Maran JP, Sivamani S, Koya PA, Karthik V, J. Mol. Liq., 241, 823 (2017)
  16. Tovar-Gomez R, Moreno-Virgen MR, Dena-Aguilar JA, Hernandez-Montoya V, Bonilla-Petriciolet A, Montes-Moran MA, Chem. Eng. J., 228, 1098 (2013)
  17. Thomas HC, J. Am. Chem. Soc., 66, 1664 (1944)
  18. Bohart G, Adams E, J. Am. Chem. Soc., 42, 523 (1920)
  19. Yoon YH, Nelson JH, Am. Ind. Hyg. Assoc. J., 45, 509 (1984)
  20. Clark RM, Environ. Sci. Technol., 21, 573 (1987)
  21. Cruz-Olivares J, Perez-Alonso C, Barrera-Diaz A, Urena-Nunez F, Chaparro-Mercado MC, Bilyeu B, Chem. Eng. J., 228, 21 (2013)
  22. Rojas-Mayorga CK, Bonilla-Petriciolet A, Sanchez-Ruiz FJ, Moreno-Perez J, Reynel-Avila HE, Aguayo-Villarreal I, Mendoza-Castillo D, J. Mol. Liq., 208, 114 (2015)
  23. Rahman N, Khan MF, J. Water Process Eng., 9, 254 (2016)
  24. Jafari M, Rahimi MR, Ghaedi M, Javadian H, Asfaram A, J. Colloid Interface Sci., 507, 172 (2017)
  25. Nazari G, Abolghasemi H, Esmaieli M, Pouya ES, Appl. Surf. Sci., 375, 144 (2016)
  26. Zhang WX, Dong L, Yan H, Li HJ, Jiang ZW, Kan XW, Yang H, Li AM, Cheng RS, Chem. Eng. J., 173(2), 429 (2011)
  27. Song JY, Zou WH, Bian YY, Su FY, Han RP, Desalination, 265(1-3), 119 (2011)
  28. Kumar K, Jena HM, J. Clean Prod., 137, 1246 (2016)
  29. Auta M, Hameed BH, J. Ind. Eng. Chem., 19(4), 1153 (2013)
  30. Han RP, Wang Y, Zhao X, Wang YF, Xie FL, Cheng JM, Tang MS, Desalination, 245(1-3), 284 (2009)
  31. Werzner E, Mendes MA, Ray S, Trimis D, Adv. Eng. Mater., 15, 1307 (2013)
  32. Goldrick S, Joseph A, Mollet M, Turner R, Gruber D, Farid SS, Titchener-Hooker NJ, J. Membr. Sci., 531, 138 (2017)
  33. Boudaoud A, Djedid M, Benalia M, Ad C, Elmsellem H, Al-Dujaili A, J. Mater., 7, 1979 (2016)
  34. Li WD, Su X, Palazzolo A, Ahmed S, J. Membr. Sci., 569, 71 (2019)
  35. Vinther F, Pinelo M, Brons M, Jonsson G, Meyer AS, Sep. Purif. Technol., 125, 21 (2014)
  36. Tien C, Ramarao BV, Chem. Eng. Res. Des., 117, 336 (2017)
  37. Salehi E, Bakhtiari L, Askari M, Chin. J. Chem. Eng., 24(11), 1527 (2016)
  38. Madaeni SS, Salehi E, J. Membr. Sci., 333(1-2), 100 (2009)
  39. Askari M, Salehi E, Ebrahimi M, Barati A, Chem. Eng. Process., 143, 107594 (2019)
  40. Robert HP, Don WG, James OM, Perry's Chemical Engineers' Handbook, sixth edition, Mc Graw-Hills, New York, 1997.
  41. Molnar IL, Johnson WP, Gerhard JI, Willson CS, O’Carroll DM, Water Resour. Res., 51, 6804 (2015)
  42. Wilke C, Chang P, AIChE J., 1, 264 (1955)
  43. Milozic N, Lubej M, Novak U, Znidarsic -Plazi P, Plazl I, Chem. Biochem. Eng. Q., 28, 215 (2014)
  44. Riazi M, Keshtkar AR, Moosavian MA, J. Environ. Chem. Eng., 4, 1890 (2016)
  45. Darweesh TM, Ahmed MJ, Ecotoxicol. Environ. Saf., 138, 139 (2017)
  46. Kapur M, Mondal MK, Desalin. Water Treat., 57, 12192 (2016)