화학공학소재연구정보센터
Polymer(Korea), Vol.44, No.3, 334-341, May, 2020
혼합용매에 의한 단순화 반응 기반 다중 관능기 도입 킬레이트 수지의 합성 및 보론 흡착특성 향상
Synthesis of Chelate Resins with Multiple Functional Groups Based on Simplified Reaction Using Mixed Solvent and Their Improved Boron Adsorption Characteristics
E-mail:
초록
수처리 시스템에 적용하기 위한 보론 흡착용 기본 수지로 poly(St-co-DVB) 가교중합체를 현탁중합으로 합성하였다. 기본 수지에 대하여 염화메틸화 반응을 거쳐 글루카민기가 도입된 킬레이트 수지를 평균 입경 500 μm 구형의 고다공성 수지로 합성하였다. 이러한 반응과정에서 혼합용매와 상용화 용매를 사용하여 상분리 없이 반응단계를 간소화하여 킬레이트 수지를 합성하였다. 글루카민기의 입체장애에 따라 글루카민 치환반응이 원활히 진행되지 못하는 문제점을 하이드록시기를 갖는 저분자량 아미노알코올을 사용하여 해결함으로써 보론 이온 흡착률이 30% 이상 향상된 새로운 구조의 킬레이트 수지를 합성하였다. 이러한 킬레이트 수지에 대해서 가교제 함량, 글루카민기 및 아미노알코올기 도입이 보론 흡착특성에 미치는 영향을 조사하였다.
Poly(St-co-DVB) crosslinked polymer was synthesized by suspension polymerization as a base material for boron adsorption in order to apply to the water treatment system. Poly(St-co-DVB) crosslinked polymer was subjected to chloromethylation reaction to synthesize various chelate resins having glucamine groups, as porous spherical particles of an average size of 500 μm. The chelate resins were synthesized by the simplified reaction of chloromethylation and glucamine substitution without phase separation by applying mixed solvent and compatibilizing solvent. Chelate resins with the new structure were synthesized using low molecular weight amino alcohol containing a hydroxyl group in order to solve the steric hindrance problem among glucamine groups in the substitution reaction. As a result, the new structure of chelate resin enabled the adsorption of boron ion to be improved more than 30% higher. Boron removal characteristics of chelate resins were evaluated depending on crosslinking agent content and introduction of both glucamine and aminoalcohol groups.
  1. Kim IS, Oh BS, J. KSEE, 30, 1197 (2008)
  2. Bick A, Oron G, Desalination, 178(1-3), 233 (2005)
  3. Wolska J, Bryjak M, Desalination, 310, 18 (2013)
  4. Oladipo AA, Gazi M, React. Funct. Polym., 190, 23 (2016)
  5. Guan Z, Lv J, Bai P, Guo X, Desalination, 383, 29 (2016)
  6. Guidlines for Drinking-Water Quality, Fourth Edition, WHO, Geneva (2011).
  7. Hilal N, Kim GJ, Somerfield C, Desalination, 273(1), 23 (2011)
  8. Wang L, Qi T, Gao Z, Zhang Y, Chu J, React. Funct. Polym., 67(3), 202 (2007)
  9. Busch M, Marston C, Prabakaran C, Proceedings of European Desaliantion Society Conference on Desalination and Environment, Santa Margherita, Italy, May 2005.
  10. Kavak D, J. Hazard. Mater., 163(1), 308 (2009)
  11. Simonnot MO, Christophe C, Miguel N, Christophe R, Sardine M, Jauffret H, Water Res., 34, 109 (2000)
  12. Kabay N, Sarp S, Yuksel M, Arar O, Bryjak M, React. Funct. Polym., 67(12), 1643 (2007)
  13. Jung S, Kim MJ, JKIRR, 25, 3 (2016)
  14. Yan CY, Yi WT, Ma PH, Deng XC, Li FQ, J. Hazard. Mater., 154(1-3), 564 (2008)
  15. Kabay N, Sarp S, Yuksel M, Kitis M, Koseoglu H, Arar O, Bryjak M, Semiat R, Desalination, 223(1-3), 49 (2008)
  16. Cho SH, Kim KC, J. KSEE, 18, 333 (1996)
  17. Hwang TS, Lee JH, Lee MJ, Polym. Korea, 25(4), 451 (2001)
  18. Park IH, Bang YK, Kim KM, Joo HJ, Polym. Korea, 27(4), 330 (2003)
  19. Jung BY, Kang SH, Lee JC, Hwang TS, Polym. Korea, 30(1), 45 (2006)
  20. Bang YK, Park CH, Han JH, Lee TJ, Choi YJ, Kim HI, Polym. Korea, 42(3), 409 (2018)
  21. Savaskan S, Besirli N, Hazer B, J. Appl. Polym. Sci., 59(10), 1515 (1996)
  22. Poinescu IC, Vlad CD, Eur. Polym. J., 33, 1515 (1997)
  23. Mohr JH, Swart R, Huber CG, Anal. Bioanal. Chem., 400, 2391 (2011)
  24. Samatya S, Kabay N, Tuncel A, J. Appl. Polym. Sci., 126(4), 1475 (2012)