- Previous Article
- Next Article
- Table of Contents
Korea-Australia Rheology Journal, Vol.32, No.2, 89-97, May, 2020
Numerical investigation of a non-Newtonian fluid squeezed between two parallel disks
E-mail:
The transient, axisymmetric squeeze flow of the non-Newtonian shear thinning material between finite disks is studied numerically. The fluid between disks is assumed to follow the Carreau-Bird model. Two disks approach each other at a constant velocity while no-slip boundary condition is assumed. The time dependent simulation shows the effect of fluid nonlinearity, flow parameters and geometric aspect ratio on the flow dynamic and evolution of squeeze force. Also, some physical phenomena are shown and are explained at the edge of the disks and out of them. The conservation and momentum equations containing inertia effects are solved using moving mesh scheme and finite volume method. The SIMPLE algorithm is used to solve the pressure-velocity coupling.
Keywords:shear thinning fluid;squeeze flow;power law index;squeeze velocity;time constant;geometric aspect ratio
- Ahamed R, Ferdaus MM, Li Y, Korea-Aust. Rheol. J., 28(4), 355 (2016)
- Bird RB, Armstrong RC, Hassager O, Dynamics of Polymeric Liquids, Vol. 1, Wiley, New York 1987.
- Debbaut B, J. Non-Newton. Fluid Mech., 98(1), 15 (2001)
- El Wahed AK, Sproston JL, Stanway R, Williams EW, J. Sound Vibr., 268, 581 (2003)
- Engmann J, Servais C, Burbidge AS, J. Non-Newton. Fluid Mech., 132(1-3), 1 (2005)
- Hoseinzadeh M, Rezaeepazhand J, Int. J. Mech. Sci., 84, 31 (2014)
- Jackson JD, Appl. Sci. Res, 11, 148 (1963)
- Kuzma DC, Maki ER, Donnelly RJ, J. Fluid Mech., 19, 395 (1964)
- Laun HM, Rady M, Hassager O, J. Non-Newton. Fluid Mech., 81(1-2), 1 (1999)
- Leider PJ, Bird RB, Ind. Eng. Chem. Fundam., 13, 336 (1974)
- Lin J, Lin M, Hung T, Wang P, Lubr. Sci., 25, 429 (2013)
- Macosko CW, Rheology: Principles, Measurements, and Applications, Wiley-VCH, New York 1994.
- Masumi Y, Nikseresht AH, Appl. Ocean Res., 68, 228 (2017)
- Moss EA, Krassnokutski A, Skews BW, Paton RT, J. Fluid Mech., 671, 384 (2011)
- Munawar S, Mehmood A, Ali A, Comput. Math. Appl., 64, 1575 (2012)
- Patankar SV, Numerical Heat Transfer and Fluid Flow, 1980.
- Phan-Thien N, Sugeng F, Tanner RI, J. Non-Newton. Fluid Mech., 24, 97 (1987)
- Pratt TJ, James DF, J. Non-Newton. Fluid Mech., 27, 27 (1988)
- Rehor M, Prusa V, Appl. Math. Comput., 274, 414 (2016)
- Sherwood JD, J. Non-Newton. Fluid Mech., 166(5-6), 289 (2011)
- Stefan J, Ann. Phys., 230, 316 (1875)
- Tichy JA, Winer WO, J. Lub. Tech., 92, 588 (1970)
- Wang FF, Ma QX, Meng W, Han ZQ, Int. J. Heat Mass Transf., 112, 1032 (2017)
- Yang SP, Zhu KQ, J. Non-Newton. Fluid Mech., 132(1-3), 84 (2005)
- Zapomel J, Ferfecki P, Kozanek J, Int. J. Mech. Sci., 127, 191 (2017)
- Zueco J, Beg OA, Tribol. Int., 43, 532 (2010)