화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.37, No.6, 1097-1106, June, 2020
A facile method to synthesize magnetic nanoparticles chelated with Copper(II) for selective adsorption of bovine hemoglobin
E-mail:,
A novel and uncomplicated synthesis method of Cu2+-chelating with carboxyl groups that directly-modified NiFe2O4 magnetic microspheres (NiFe2O4-PAA-Cu2+) was fabricated for selective enrichment and separation of bovine hemoglobin (BHb). First, a carboxyl group directly-modified on NiFe2O4 magnetic microspheres was gained through a facile one-pot solvothermal method. Second, Cu2+ from CuSO4 was brought into use to react with carboxyl groups under mechanical stirring at room temperature. The resulting magnetic microspheres were characterized by distinct instruments that included transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), vibrating sample magnetometer (VSM) and scanning electron microscope (SEM) to examine the size, morphology, composition and magnetization characterization. The results indicated that the NiFe2O4-PAA-Cu2+ microspheres exhibited good saturation magnetization(36.686 emu g?1), which can facilitate magnetic separation under the help of an outside magnetic field. Also, good dispersion and high adsorption ability to BHb (783.53mg g?1) can be applied to selective enrichment for bovine hemoglobin and used for selective sorption of BHb protein in bovine blood samples.
  1. Zhai QZ, Zhang XX, Asian J. Chem., 20, 5060 (2008)
  2. Wang BH, Shao Q, New J. Chem., 41, 5651 (2017)
  3. Graves DJ, Trends Biotechnol., 17, 127 (1999)
  4. Wang YQ, Zhang HM, Int. J. Biol. Macromol., 41, 243 (2007)
  5. Liu YJ, Wang YZ, Anal. Chim. Acta, 936, 168 (2016)
  6. Li DY, Wang YZ, J. Mater. Chem. B, 2, 5659 (2014)
  7. Tetala KKR, Skrzypek K, Levisson M, Stamatialis DF, Sep. Purif. Technol., 115, 20 (2013)
  8. Wang JD, Tan SY, Talanta, 190, 210 (2018)
  9. Din C, Ma XD, J. Chromatogr. A, 1424, 18 (2015)
  10. Liu BS, Yang XN, Luminescence, 29, 211 (2014)
  11. Guo ZY, Zhang Y, ACS Appl. Mater. Interfaces, 8, 29734 (2016)
  12. Wuenschell GE, Naranjo E, Arnold FH, Bioprocess Eng., 5, 199 (1990)
  13. Zhang Y, Xing LG, ACS Appl. Mater. Interfaces, 7, 5116 (2015)
  14. Zhai Q, Zhang X, Asian J. Chem., 20, 5060 (2008)
  15. Mu PQ, Feng DR, J. Biochem., 150, 491 (2011)
  16. Wang JJ, Zhang R, Talanta, 176, 308 (2018)
  17. Du KF, Liu XH, ACS Sustainable Chem. Eng., 6, 11578 (2018)
  18. Kip C, Tosunb RB, Talanta, 200, 100 (2019)
  19. Guo ZY, Zhang Y, ACS Appl. Mater. Interfaces, 8, 29734 (2016)
  20. Zhang Y, Xing LG, ACS Appl. Mater. Interfaces, 7, 5116 (2015)
  21. Guo TY, Xia YQ, Biomaterials, 25, 5905 (2004)
  22. Jia XP, Xu ML, Analyst, 138, 651 (2013)
  23. Kan XW, Zhao Q, Shao DL, Geng Z, Wang ZL, Zhu JJ, J. Phys. Chem. B, 114(11), 3999 (2010)
  24. Yang XD, Zhang M, Zheng J, Li WZ, Gan WJ, Xu JL, Hayat T, Alharbi NS, Yang F, Appl. Surf. Sci., 439, 128 (2018)
  25. Zhang M, He XW, Nanotechnology, 22, 065705 (2011)
  26. Zhang M, He XW, J. Mater. Chem., 20, 10696 (2010)
  27. Zhang H, Wang WW, New J. Chem., 42, 3990 (2018)
  28. Zheng JN, Lin Z, J. Mater. Chem. B., 2, 6207 (2014)
  29. Zhang YW, Zhang M, J. Alloy. Compd., 695, 3256 (2017)
  30. Zheng JN, Lin Z, J. Mater. Chem. B., 3, 2185 (2015)
  31. Gomez B, Rubio S, Anal. Chem., 81, 9012 (2009)
  32. Deng H, Li X, Peng Q, Angew. Chem., 117, 2842 (2005)
  33. Deng YH, Deng CH, Qi DW, Liu C, Liu J, Zhang XM, Zhao DY, Adv. Mater., 21(13), 1377 (2009)
  34. Niasari MS, Davar F, Polyhedron, 28, 1455 (2009)
  35. Hu YZ, Zhao CF, Yin L, Wen T, Yang Y, Ai YJ, Wang XK, Chem. Eng. J., 349, 347 (2018)
  36. Mirahmadi-Zare SZ, Allafchian A, Protein Expression and Purification, 121, 52 (2016).
  37. Li JH, Chen MJ, Colloids Surf. B: Biointerfaces, 146, 468 (2016)
  38. Wan W, Liang QL, Analyst, 141, 4568 (2016)
  39. Lu AH, Salabas EL, Angew. Chem.-Int. Edit., 46, 1222 (2007)
  40. Faraji M, Yamini Y, Chem. Soc., 7, 1 (2010)
  41. Salimi K, Usta DD, RSC Adv., 7, 8718 (2017)
  42. Zhao M, Deng CH, Chem. Commun., 50, 6228 (2014)
  43. Yao X, Ma XD, RSC Adv., 7, 29330 (2017)
  44. Zhang M, Wang YT, Zhang YW, Ding L, Zheng J, Xu JL, Appl. Surf. Sci., 375, 154 (2016)
  45. Block H, Maertens B, Methods Enzymol., 463, 440 (2009)
  46. Maensiri S, Masingboon C, Scripta Mater., 56, 797 (2007)
  47. Sivakumar P, Ramesh R, Mater. Res. Bullet., 46, 2204 (2011)
  48. Cheng YL, Zhao Y, Zhang YF, Cao XQ, J. Colloid Interface Sci., 344(2), 321 (2010)
  49. Kurtana U, Gungunes H, Ceram. Int., 42, 7987 (2016)
  50. Yue Q, Li JL, Luo W, Zhang Y, Elzatahry AA, Wang XQ, Wang C, Li W, Cheng XW, Alghamdi A, Abdullah AM, Deng YH, Zhao DY, J. Am. Chem. Soc., 137(41), 13282 (2015)
  51. Rouquerol F, Rouquerol J, Adsorption by powders and porous solids: principles, methodology and applications, 2nd Ed., Elsevier, Amsterdam, 11 (2014).
  52. Zhang Y, Guo ZY, Carbon, 122, 194 (2017)
  53. Satyanarayana L, Reddy KM, Manorama SV, Mater. Chem. Phys., 82(1), 21 (2003)
  54. Liu J, Bin YZ, J. Phys. Chem. C, 116, 134 (2012)
  55. Jian GQ, Liu YX, Nanoscale, 4, 6336 (2012)
  56. Gao RX, Cui XH, Talanta, 150, 46 (2016)
  57. Liu YJ, Wang YZ, Anal. Chim. Acta, 936, 168 (2016)
  58. Zhang M, Cheng D, Asian J., 5, 1332 (2010)
  59. Gao RX, Mu XR, J. Mater. Chem. B., 2, 1733 (2014)
  60. Wang JD, Guan HY, ACS Biomater. Sci. Eng., 5, 2740 (2019)
  61. Altıntas EB, Turkmen D, Colloids Surf. B: Biointerfaces, 85, 235 (2011)
  62. Zhang Y, Xing LG, ACS Appl. Mater. Interfaces, 7, 5116 (2015)
  63. Shi L, Tang YH, J. Sep. Sci., 39, 2876 (2016)