화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.37, No.6, 938-945, June, 2020
Defect-controlled Fe-N-doped carbon nanofiber by ball-milling for oxygen reduction reaction
E-mail:
We demonstrate that control of the defect level on carbon materials is effective for enhancing the oxygen reduction reaction (ORR) performance of nonprecious-metal catalysts. Vapor-grown carbon nanofiber (VGCNF) with high crystallinity and high electronic conductivity was chosen as the substrate of our ORR catalysts. To induce defects on the VGCNF, it was subjected to ball-milling for various controlled times, yielding BMx-VGCNF (x represents the ball-milling time, 0-6 h). The defect level introduced on the VGCNF was effectively regulated by controlling the ballmilling time. Although the density of defect sites increased with increasing ball-milling time, the surface area was highest in BM2-VGCNF. Nonprecious-metal ORR catalysts (BMx-Fe-VGCNF) were prepared by NH3 pyrolysis of Fe-ionadsorbed BMx-VGCNF. The ball-milling of VGCNF was effective to introduce nitrogen onto the catalyst. In particular, the controlled ball-milling was important to generate highly active sites on the catalyst surface. Among the catalysts studied, BM2-Fe-VGCNF exhibited the best ORR performance, which was 2.5-times greater than that of BMx-Fe-VGCNF (x=4, 6).
  1. Sopian K, Daud WRW, Renew. Energy, 31(5), 719 (2006)
  2. Liu HS, Song CJ, Zhang L, Zhang JJ, Wang HJ, Wilkinson DP, J. Power Sources, 155(2), 95 (2006)
  3. Markovic NM, Grgur BN, Ross PN, J. Phys. Chem. B, 101(27), 5405 (1997)
  4. Steele BCH, Heinzel A, Nature, 414, 345 (2001)
  5. Wee JH, Lee KY, Kim SH, J. Power Sources, 165(2), 667 (2007)
  6. Yu XW, Ye SY, J. Power Sources, 172(1), 145 (2007)
  7. Lefevre M, Dodelet JP, Bertrand P, J. Phys. Chem. B, 106(34), 8705 (2002)
  8. Wagner AJ, Wolfe GM, Fairbrother DH, Appl. Surf. Sci., 219(3-4), 317 (2003)
  9. Alonso-Vante N, Fieber-Erdmann M, Rossner H, Holub-Krappe E, Giorgetti C, Tadjeddine A, Dartyge E, Fontaine A, Frahm R, J. Phys. IV, 7, 887 (1997)
  10. Matter PH, Zhang L, Ozkan US, J. Catal., 239(1), 83 (2006)
  11. Mustain WE, Prakash J, J. Power Sources, 170(1), 28 (2007)
  12. Adcock PA, Pacheco SV, Norman KM, Uribe FA, J. Electrochem. Soc., 152(2), A459 (2005)
  13. Tripkovi V, Abild-Pedersen F, Studt F, Cerri I, Nagami T, Bligaard T, Rossmeisl J, Chem. Cat. Chem., 4, 228 (2012)
  14. Samiee L, Shoghi F, Vinu A, Appl. Surf. Sci., 265, 214 (2013)
  15. Ham DJ, Lee JS, Energies, 2, 873 (2009)
  16. Rosenbaum M, Zhao F, Schroder U, Scholz F, Angew. Chem.-Int. Edit., 45, 6658 (2006)
  17. Stariha S, Serov A, Artyushkova K, Atanassov P, J. Electrochem. Soc., 37, 1295 (2015)
  18. Gumeci C, Leonard N, Halevi B, Barton SC, J. Electrochem. Soc., 26, 1579 (2015)
  19. Atanassov P, Serov A, Artyushkova K, Kiefer B, J. Electrochem. Soc., 21, 950 (2014)
  20. Zhang J, Dai L, ACS Catal., 5, 7244 (2015)
  21. Kim DW, Li O, Saito N, Phys. Chem. Chem. Phys., 17, 407 (2015)
  22. Zhang H, Osgood H, Xie X, Shao Y, Wu G, Nano Energy, 31, 331 (2017)
  23. Chung Hoon T., Cullen David A., Higgins Drew, Sneed Brian T., Holby Edward F., More Karren L., Zelenay Piotr, Science, 357(6350), 479 (2017)
  24. Holby EF, Wu G, Zelenay G, Taylor CD, J. Phys. Chem. C, 118, 14388 (2014)
  25. Charreteur F, Jaouen F, Ruggeri S, Dodelet JP, Electrochim. Acta, 53(6), 2925 (2008)
  26. Ren G, Lu X, Li Y, Zhu Y, Dai L, ACS Appl. Mater. Interfaces, 8, 4118 (2016)
  27. Shen H, Thomas T, Rasaki SA, Saad A, Hu C, Wang J, Yang M, Electrochem. Energy Rev., 2, 252 (2019)
  28. Wang Q, Zhou ZY, Lai YJ, You Y, Liu JG, Wu XL, Terefe E, Chen C, Song L, Rauf M, Tian N, Sun SG, J. Am. Chem. Soc., 136(31), 10882 (2014)
  29. Jiang WJ, Gu L, Li L, Zhang Y, Zhang X, Zhang LJ, Wang JQ, Hu JS, Wei ZD, Wan LJ, J. Am. Chem. Soc., 138(10), 3570 (2016)
  30. Wu Z, Xu X, Hu B, Liang HW, Lin Y, Chen LF, Yu SH, Angew. Chem.-Int. Edit., 54, 8179 (2015)
  31. Yasuda S, Furuya A, Uchibori Y, Kim J, Murakoshi K, Adv. Funct. Mater., 26(5), 738 (2016)
  32. Feng L, Xie N, Zhong J, Materials, 7, 3919 (2014)
  33. Liu D, Long Y, ACS Appl. Mater. Interfaces, 7, 24063 (2015)
  34. Men B, Sun Y, Liu J, Tang Y, Chen Y, Wan P, Pan J, ACS Appl. Mater. Interfaces, 8, 19533 (2016)
  35. Xing T, Li LH, Hou L, Hu X, Zhou S, Peter R, Chen Y, Carbon, 57, 515 (2013)
  36. Johra FT, Lee JW, Jung WG, J. Ind. Eng. Chem., 20(5), 2883 (2014)
  37. Gao X, Yokota N, Oda H, Tanaka S, Hokamoto K, Chen P, Crystals, 8, 104 (2018)
  38. Proietti E, Ruggeri S, Dodelet JP, J. Electrochem. Soc., 155(4), B340 (2008)
  39. Lefevre M, Dodelet JP, Electrochim. Acta, 53(28), 8269 (2008)
  40. Liu G, Li XG, Ganesan P, Popov BN, Appl. Catal. B: Environ., 93(1-2), 156 (2009)
  41. Wu G, More KL, Johnston CM, Zelenay P, Science, 332(6028), 443 (2011)
  42. Hu Y, Jensen JO, Zhang W, Martin S, Chenitz R, Pan C, Li Q, J. Mater. Chem. Assn, 3, 1752 (2015)
  43. Yang WX, Liu XJ, Yue XY, Jia JB, Guo SJ, J. Am. Chem. Soc., 137(4), 1436 (2015)
  44. Niu YL, Huang XQ, Hu WH, J. Power Sources, 332, 305 (2016)
  45. Artyushkova K, Matanovic I, Halevi B, Atanassov P, J. Phys. Chem. C, 121, 2836 (2017)