화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.37, No.6, 955-960, June, 2020
Gas-phase dehydration of glycerol to acrolein over different metal phosphate catalysts
E-mail:
We conducted a comparative study of gas phase dehydration of glycerol to acrolein over aluminium phosphate, iron phosphate and nickel phosphate catalysts prepared by a simple replacement reaction method (AlP, FeP and NiP). The textural properties, acid amounts, acid types, and coke contents of the samples were studied. The results showed that all metal phosphate catalysts remained in an amorphous state. The glycerol conversion was proportional to the acid amount of metal phosphate catalyst in the glycerol dehydration reaction. Higher value of B/L was more likely to produce acrolein. Among the metal phosphate catalysts, FeP showed superior performance due to its suitable textural and acid properties. After 2 h on stream, high glycerol conversion (96%), acrolein selectivity (82%) and acrolein yield (79%) were achieved on the FeP catalyst at 280 °C. The catalyst deactivation was ascribed to carbon deposition on the catalyst surface blocking the active sites during the glycerol dehydration reaction.
  1. Talebian-Kiakalaieh A, Amin NAS, Renew. Energy, 114, 794 (2017)
  2. Anitha M, Kamarudin SK, Kofli NT, Chem. Eng. J., 295, 119 (2016)
  3. Chagas P, Thibau MA, Breder S, Souza PP, Caldeira GS, Portilho MF, Castro CS, Oliveira LCA, Chem. Eng. J., 369, 1102 (2019)
  4. Shen LQ, Yin HB, Wang AL, Feng YH, Shen YT, Wu ZA, Jiang TS, Chem. Eng. J., 180, 277 (2012)
  5. Ma TL, Yun Z, Xu W, Chen LG, Li L, Ding JF, Shao R, Chem. Eng. J., 294, 343 (2016)
  6. Talebian-Kiakalaieh A, Amin NAS, Zakaria ZY, J. Ind. Eng. Chem., 34, 300 (2016)
  7. Ma TL, Ding JF, Shao R, Xu W, Yun Z, Chem. Eng. J., 316, 797 (2017)
  8. Ding J, Ma T, Cui M, Shao R, Guan R, Wang P, Mol. Catal., 461, 1 (2018)
  9. Ding J, Ma T, Shao R, Xu W, Wang P, Song X, Guan R, Yeung K, Han W, New. J. Chem., 42, 14271 (2018)
  10. Deleplanque J, Dubois JL, Devaux JF, Ueda W, Catal. Today, 157(1-4), 351 (2010)
  11. Estevez R, Lopez-Pedrajas S, Blanco-Bonilla F, Luna D, Bautista FM, Chem. Eng. J., 282, 179 (2015)
  12. Akizuki M, Sano K, Oshima Y, J. Supercrit. Fluids, 113, 158 (2016)
  13. Sung KH, Cheng S, RSC Adv., 7, 41880 (2017)
  14. Fernandes A, Ribeiro MF, Lourenco JP, Catal. Commun., 95, 16 (2017)
  15. Lago CD, Decolatti HP, Tonutti LG, Dalla Costa BO, Querini CA, J. Catal., 366, 16 (2018)
  16. Shan J, Li Z, Zhu S, Liu H, Li J, Wang J, Fan W, Catalysts, 9, 121 (2019)
  17. Talebian-Kiakalaieh A, Amin NAS, Chinese J. Catal., 38, 1697 (2017)
  18. Lopez-Pedrajas S, Estevez R, Navarro R, Luna D, Bautista FM, J. Mol. Catal. A-Chem., 421, 92 (2016)
  19. Lopez-Pedrajas S, Estevez R, Blanco-Bonilla F, Luna D, Bautista FM, J. Chem. Technol. Biot., 92, 2661 (2017)
  20. Li Y, Zhao C, Chem. Mater., 28, 5659 (2016)
  21. Fiorito D, Folliet S, Liu Y, Mazet C, ACS Catal., 8, 1392 (2018)
  22. Lee SK, Lee UH, Hwang YK, Chang JS, Jang NH, Catal. Today, 324, 154 (2019)
  23. Emeis CA, J. Catal., 141, 347 (1993)
  24. Liu B, Jiang P, Zhang P, Zhao H, Huang J, C. R. Chim., 20, 540 (2017)
  25. Chai SH, Wang HP, Liang Y, Xu BQ, J. Catal., 250(2), 342 (2007)
  26. Gadgil MM, Kulshreshtha SK, J. Solid State Chem., 111, 357 (1994)
  27. Harilal A, Dasireddy VDBC, Friedrich HB, Catal. Lett., 146(7), 1169 (2016)
  28. Wu SK, Lai PC, Lin YC, Catal. Lett., 144(5), 878 (2014)
  29. Suprun W, Lutecki M, Haber T, Papp H, J. Mol. Catal. A-Chem., 309(1-2), 71 (2009)
  30. Stosic D, Bennici S, Sirotin S, Calais C, Couturier JL, Dubois JL, Travert A, Auroux A, Appl. Catal. A: Gen., 447, 124 (2012)
  31. Tsukuda E, Sato S, Takahashi R, Sodesawa T, Catal. Commun., 8, 1349 (2007)