화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.30, No.5, 267-271, May, 2020
전자밀도함수이론을 이용한 세륨 산화물의 (111) 표면에서 일어나는 물 흡착 과정 분석
Theoretical Investigation of Water Adsorption Chemistry of CeO2(111) Surfaces by Density Functional Theory
E-mail:
Cerium oxide (ceria, CeO2) is one of the most wide-spread oxide supporting materials for the precious metal nanoparticle class of heterogeneous catalysts. Because ceria can store and release oxygen ions, it is an essential catalytic component for various oxidation reactions such as CO oxidation (2CO + O2 2CO2). Moreover, reduced ceria is known to be reactive for water activation, which is a critical step for activation of water-gas shift reaction (CO + H2O → H2 + CO2). Here, we apply van der Waals-corrected density functional theory (DFT) calculations combined with U correction to study the mechanism of water chemisorption on CeO2(111) surfaces. A stoichiometric CeO2(111) and a defected CeO2(111) surface showed different water adsorption chemistry, suggesting that defected CeO2 surfaces with oxygen vacancies are responsible for water binding and activation. An appropriate level of water-ceria chemisorption energy is deduced by vdW-corrected non-local correlation coupled with the optB86b exchange functional, whereas the conventional PBE functional describes weaker water-ceria interactions, which are insufficient to stabilize (chemisorb) water on the ceria surfaces.
  1. Risse T, Shaikhutdinov S, Nilius N, Sterrer M, Freund HJ, Accounts Chem. Res., 41, 949 (2008)
  2. Schauermann S, Freund HJ, Accounts Chem. Res., 48, 2775 (2015)
  3. Schauermann S, Nilius N, Shaikhutdinov S, Freund HJ, Accounts Chem. Res., 46, 1673 (2013)
  4. Cargnello M, Doan-Nguyen VVT, Gordon TR, Diaz RE, Stach EA, Gorte RJ, Fornasiero P, Murray CB, Science, 341(6147), 771 (2013)
  5. Kim HY, Henkelman G, J. Phys. Chem. Lett., 4, 216 (2013)
  6. Graciani J, Mudiyanselage K, Xu F, Baber AE, Evans J, Senanayake SD, Stacchiola DJ, Liu P, Hrbek J, Sanz JF, Rodriguez JA, Science, 345(6196), 546 (2014)
  7. Rodriguez JA, Grinter DC, Liu Z, Palomino RM, Senanayake SD, Chem. Soc. Rev., 46, 1824 (2017)
  8. Ha H, Yoon S, An K, Kim HY, ACS Catal., 8, 11491 (2018)
  9. Choi Y, Cha SK, Ha H, Lee S, Seo HK, Lee JY, Kim HY, Kim SO, Jung W, Nat. Nanotechnol., 14(3), 245 (2019)
  10. Yoo M, Yu YS, Ha H, Lee S, Choi JS, Oh S, et al., Energy Environ. Sci., 13, 1231 (2020)
  11. Kim HY, Henkelman G, J. Phys. Chem. Lett., 3, 2194 (2012)
  12. Kim HY, Lee HM, Henkelman G, J. Am. Chem. Soc., 134(3), 1560 (2012)
  13. Zhang L, Kim HY, Henkelman G, J. Phys. Chem. Lett., 4, 2943 (2013)
  14. Madhuri C, Venkataramana K, Nurhayati A, Reddy CV, Curr. Appl. Phys., 18(10), 1134 (2018)
  15. Kim-Lohsoontorn P, Laosiripojana N, Bae J, Curr. Appl. Phys., 11(1), S223 (2011)
  16. Rodriguez JA, Liu P, Hrbek J, Evans J, Perez M, Angew. Chem.-Int. Edit., 46, 1329 (2007)
  17. Rodriguez JA, Graciani J, Evans J, Park JB, Yang F, Stacchiola D, Senanayake SD, Ma S, Perez M, Liu P, Angew. Chem., 121, 8191 (2009)
  18. Rodriguez JA, Hanson JC, Stacchiola D, Senanayake SD, Phys. Chem. Chem. Phys., 15, 12004 (2013)
  19. Bruix A, Rodriguez JA, Ramirez PJ, Senanayake SD, Evans J, Park JB, Stacchiola D, Liu P, Hrbek J, Illas F, J. Am. Chem. Soc., 134(21), 8968 (2012)
  20. Kim HY, Liu P, ChemCatChem, 5, 3673 (2013)
  21. Ratnasamy C, Wagner JP, Catal. Rev.-Sci. Eng., 51, 325 (2009)
  22. Park JB, Graciani J, Evans J, Stacchiola D, Senanayake SD, Barrio L, Liu P, Sanz JF, Hrbek J, Rodriguez JA, J. Am. Chem. Soc., 132(1), 356 (2010)
  23. Park JB, Graciani J, Evans J, Stacchiola D, Ma S, Liu P, Nambu A, Sanz JF, Hrbek J, Rodriguez JA, Proc. Natl. Acad. Sci. U. S. A., 106, 4975 (2009)
  24. Mullins DR, Albrecht PM, Chen TL, Calaza FC, Biegalski MD, Christen HM, Overbury SH, J. Phys. Chem. C, 116, 19419 (2012)
  25. Fernandez-Torre D, Kosmider K, Carrasco J, Ganduglia-Pirovano MV, Perez R, J. Phys. Chem. C, 116, 13584 (2012)
  26. Kresse G, Furthmuller J, Phys. Rev. B, 54, 11169 (1996)
  27. Dudarev SL, Botton GA, Savrasov SY, Humphreys CJ, Sutton AP, Phys. Rev. B, 57, 1505 (1998)
  28. Jiri K, David RB, Angelos M, J. Phys. Condens. Matter, 22, 022201 (2010)
  29. Klimes J, Bowler DR, Michaelides A, Phys. Rev. B, 83, 195131 (2011)
  30. Blochl PE, Phys. Rev. B, 50, 17953 (1994)
  31. Henkelman G, Jonsson H, J. Chem. Phys., 113(22), 9978 (2000)
  32. Henkelman G, Uberuaga BP, Jonsson H, J. Chem. Phys., 113(22), 9901 (2000)
  33. Esch F, Fabris S, Zhou L, Montini T, Africh C, Fornasiero P, Comelli G, Rosei R, Science, 309, 752 (2005)
  34. Loschen C, Migani A, Bromley ST, Illas F, Neyman KM, Phys. Chem. Chem. Phys., 10, 5730 (2008)
  35. Yu SG, Zhang HY, Lin CC, Bian MJ, Curr. Appl. Phys., 19(2), 82 (2019)
  36. Zhang SL, Choi HH, Yue HY, Yang WC, Curr. Appl. Phys., 14(3), 264 (2014)
  37. Mudiyanselage K, Kim HY, Senanayake SD, Baber AE, Liu P, Stacchiola D, Phys. Chem. Chem. Phys., 15, 15856 (2013)