화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.87, 136-144, July, 2020
Surface structure-dependent hydrophobicity/oleophilicity of pyrite and its influence on coal flotation
E-mail:
Flotation is an important method to remove the inorganic sulfur from coal. Its effect depends on the difference in adhesion between coal and pyrite to air bubbles and flotation reagents. In this study, the interface properties of coal powder/plate and pyrite powder/crystals were investigated using a comprehensive approach combining wetting process, induction time, contact angle, and X ray photoelectron spectroscopy. The experimental results show that the spreading and adsorption speed of diethyl phthalate on pyrite crystals and powder is close to that on coal surface in the air. However, the adsorption rate of pyrite to water is much higher than that of coal. In aqueous environment, it is difficult for diethyl phthalate to spread on pyrite crystals, especially in alkaline solution. The difference of hydrophobicity between coal and pyrite at air.water interface is smaller than that at oil.water interface. The adhesion of air bubble and reagent droplet on three pyrite facets is also different. The oxidation of pyrite {100} is faster and greater than that of {210} and {111} facets in alkaline solution, which is beneficial to the coal desulfurization. These findings disclose the hydrophobicity/oleophilicity and structure- reactivity dependence of pyrite in the flotation.
  1. LIU D, SOMASUNDARAN P, Int. J. Miner. Process., 41(3), 227 (1994)
  2. Dana ES, The System of Mineralogy of James Dwight Dana, Wiley, New York, 1903.
  3. Guevremont JM, Elsetinow AR, Strongin DR, Bebie J, Schoonen MAA, Am. Miner., 83, 1353 (1998)
  4. He HP, Xian HY, Zhu JX, Tan W, Lian XL, Chen M, Acta Petrol. Sin., 35, 129 (2019)
  5. Alfonso DR, J. Phys. Chem. C, 114, 8971 (2010)
  6. Zhu JX, Xian HY, Lin XJ, Tang HM, Du RX, Yang YP, Zhu RL, Liang XL, Wei JM, Teng HH, He HP, Geochim. Cosmochim. Acta, 228, 259 (2018)
  7. Elsetinow AR, Guevremont JM, Strongin DR, Schoonen MAA, Strongin M, Am. Miner., 85, 623 (2000)
  8. Xian XY, He HP, Zhu JX, Du RX, Wu X, Tang HM, Tan W, Liang XL, Zhu RL, Teng HH, Geochim. Cosmochim. Acta, 264, 191 (2019)
  9. Ndlovu S, Monhemius AJ, Hydrometallurgy, 78, 187 (2005)
  10. de Leeuw NH, Parker SC, Sithole HM, Ngoepe PE, J. Phys. Chem. B, 104(33), 7969 (2000)
  11. Hung A, Muscat J, Yarovsky I, Russo SP, Surf. Sci., 520, 111 (2002)
  12. Stirling A, Bernasconi M, Parrinello M, J. Chem. Phys., 118(19), 8917 (2003)
  13. Han GH, Su SP, Huang YF, Peng WJ, Cao YJ, Liu JT, Minerals, 8, 166 (2018)
  14. Ge W, Li HQ, Ren YZ, Zhao FY, Song SX, Minerals, 5, 654 (2015)
  15. Xi P, Shi CX, Yan PK, Liu WL, Tang LG, Appl. Surf. Sci., 466, 964 (2019)
  16. Zhou Y, Albijanic B, Tadesse B, Wang YL, Yang JG, Zhu XN, Fuel Process. Technol., 187, 1 (2019)
  17. Mu YF, Peng YJ, Lauten RA, Miner. Eng., 92, 37 (2016)
  18. Chen JH, Long XH, Chen Y, J. Phys. Chem. C, 118, 11657 (2014)
  19. Xian YJ, Nie Q, Wen SM, Liu J, Deng JS, J. Cent. South Univ., 22, 2508 (2015)
  20. Wu R, Jian JK, Tao LT, Bian YL, Li J, Sun YF, Wang J, Zeng XY, Powder Diffr., 25, S40 (2010)
  21. Xie J, Zhang Q, Mao S, Li XH, Shen ZH, Li LJ, Appl. Surf. Sci., 493, 294 (2019)
  22. Pourghahramani P, Akhgar BN, Int. J. Miner. Process., 134, 23 (2015)
  23. Hung A, Muscat J, Yarovsky I, Russo SP, Surf. Sci., 513, 511 (2002)
  24. Xia YC, Zhang R, Xing YW, Gui XH, Fuel, 235, 687 (2019)
  25. Zou WJ, Cao YJ, Liu JT, Li WN, Liu C, Powder Technol., 246, 669 (2013)
  26. Albijanic B, Ozdemir O, Nguyen AV, Bradshaw D, Adv. Colloid Interface Sci., 159, 1 (2010)
  27. Hassas BV, Jin JQ, Dang LX, Wang XM, Miller JD, Langmuir, 34(47), 14317 (2018)
  28. Chen SJ, Yang Z, Chen L, Tao XX, Tang LF, He H, Fuel, 207, 214 (2017)
  29. Raichur AM, Wang XH, Parekh BK, Colloids Surf. A: Physicochem. Eng. Asp., 167, 245 (2000)
  30. Uddin S, Li Y, Mirnezami M, Finch JA, Miner. Eng., 36-38, 160 (2012)
  31. Zhang NN, Ejtemaei M, Nguyen AV, Zhou CC, Miner. Eng., 136, 1 (2019)
  32. Wang B, Peng YJ, Vink S, Energy Fuels, 27(8), 4869 (2013)
  33. Lyu XJ, You XF, He M, Zhang W, Wei HB, Li L, He QQ, Fuel, 211, 529 (2018)
  34. Xing YW, Gui XH, Cao YJ, Wang YW, Xu MD, Wang DY, Li CW, Powder Technol., 305, 166 (2017)
  35. Xia WC, Yang JG, Energy Fuels, 27(12), 7324 (2013)
  36. Wang J, He YQ, Li H, Yu JD, Xie WN, Wei H, Fuel, 203, 764 (2017)
  37. Li M, Xia YC, Zhang YF, Ding SH, Rong GQ, Cao YJ, Xing YW, Gui XH, Fuel, 255, 115885 (2019)
  38. Xia YC, Yang ZL, Xing YW, Gui XH, Physicochem. Probl. Miner. Process., 55, 586 (2019)
  39. Zhang P, Yuan SH, Liao P, Geochim. Cosmochim. Acta, 172, 44 (2016)
  40. Cai YF, Pan YG, Xue JY, Sun QF, Su GZ, Li X, Appl. Surf. Sci., 255(21), 8750 (2009)
  41. Nesbitt HW, Bancroft GM, Pratt AR, Scaini MJ, Am. Miner., 83, 1067 (1998)
  42. Derycke V, Kongolo M, Benzaazoua M, Mallet M, Barres O, De Donato P, Bussiere B, Mermillod-Blondin R, Int. J. Miner. Process., 118, 1 (2013)
  43. Bonnissel-Gissinger P, Alnot M, Ehrhardt J, Behra P, Environ. Sci. Technol., 32, 2839 (1998)