화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.31, No.3, 305-309, June, 2020
리튬전지용 에테르가 기능화된 이온성 액체 기반 이온성 액정 전해질의 전기화학적 특성
Ionic Liquid Crystal Electrolytes based on Ether Functionalized Ionic Liquid for Lithium Batteries
E-mail:
초록
본 연구에서는 에테르가 기능화된 이온성 액체인 [DMIm][MPEGP] (1,3-dimethylimidazolium (2-methoxy(2-ethoxy(2-ethoxy)))-ethylphosphite)와 리튬염인 LiTf2N (lithium bis(trifluoromethanesulfonyl)imide)을 혼합하였고, 리튬염의 함량을 조절하여 전해질을 특성을 조사하였다. 제조된 전해질은 리튬염 혼합에 따라 불투명해지고 흐름성이 제한된 열방성 액정을 형성하였으며, 이때 리튬염의 함량에 따라 형성되는 이온성 액정의 자기조립구조와 이온 전도 현상을 다양한 분광학적 분석을 통해 조사하였다. 그 결과 이온성 액정의 향상된 이온전도도는 정렬된 구조를 통한 이온 전도 특성과 관계가 있음을 확인하였으며, 리튬이온전지 특성 평가에서 우수한 전기화학적 특성을 나타냄을 확인하였다.
In this study, a series of ionic liquids based electrolytes for lithium batteries were prepared by mixing the anion functionalized ionic liquid, [DMIm][MPEGP] (1,3-dimethylimidazolium (2-methoxy(2-ethoxy(2-ethoxy)))-ethylphosphite), with the lithium salt, LiTf2N (lithium bis(trifluoromethanesulfonyl)imide), and the concentration of lithium salt was varied between 0 and 3.0 molar ratio. We observed the ionic mixtures became opaque and spontaneously aggregated to form a thermotropic ionic liquid crystal. Extensive spectroscopic examinations of the ionic liquid crystals were carried out to investigate their self-organized structures and the ion transport behavior depending on the concentration of lithium salt. An increase in the ionic conductivity was observed for the ionic liquid crystals related to the ability to form ion diffusion pathways along the ordered structures, resulting in improved electrochemical performances of lithium batteries.
  1. Sun Y, Liu N, Cui Y, Nat. Energy, 1, 16071 (2016)
  2. Zhang Q, Liu K, Ding F, Liu X, Nano Res., 10, 4139 (2017)
  3. Fergus JW, J. Power Sources, 195(15), 4554 (2010)
  4. Quartarone E, Mustarelli P, Chem. Soc. Rev., 40, 2525 (2011)
  5. Zheng F, Kotobuki M, Song SF, Lai MO, Lu L, J. Power Sources, 389, 198 (2018)
  6. Goossens K, Lava K, Bielawski CW, Binnemans K, Chem. Rev., 116(8), 4643 (2016)
  7. Binnemans K, Chem. Rev., 105(11), 4148 (2005)
  8. Ichikawa T, Kato T, Ohno H, Chem. Commun., 55, 8205 (2019)
  9. Kato T, Yoshio M, Ichikawa T, Soberats B, Ohno H, Funahashi M, Nat. Rev. Mater., 2, 17001 (2017)
  10. Champagne PL, Ester D, Bhattacharya A, Hofstetter K, et al., J. Mater. Chem. A, 7, 12201 (2019)
  11. Onuma T, Hosono E, Takenouchi M, Sakuda J, Kajiyama S, Yoshio M, Kato T, ACS Omega, 3, 159 (2018)
  12. Wang S, Liu X, Wang A, Wang Z, Chen J, Zeng Q, Wang X, Zhang L, Polym. Chem., 9, 4674 (2018)
  13. Eisele A, Kyriakos K, Bhandary KR, Schonhoff M, Papadakis CM, Rieger CMB, J. Mater. Chem. A, 3, 2942 (2015)
  14. Lee JH, Han KS, Lee JS, Lee AS, Park SK, Hong SY, Lee JC, Mueller KT, Hong SM, Koo CM, Adv. Mater., 28(42), 9301 (2016)
  15. Giffin GA, J. Mater. Chem. A, 4, 13378 (2016)
  16. Park SK, Han KS, Lee JH, Murugesan V, Lee SH, Koo CM, Lee JS, Mueller KT, J. Phys. Chem. C, 123, 20547 (2019)
  17. Monteiro MJ, Bazito FFC, Siqueira LJA, Ribeiro MCC, Torresi RM, J. Phys. Chem. B, 112(7), 2102 (2008)
  18. Lee AS, Lee JH, Hong SM, Lee JC, Hwang SS, Koo CM, RSC Adv., 5, 94241 (2015)
  19. Zhang Q, Zhang Y, Meng Y, Wang Y, Ou J, Guo Y, Xiao D, Nano Energy, 34, 408 (2020)