화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.31, No.3, 317-322, June, 2020
수산화암모늄나이트레이트(HAN)의 습식합성 및 이중 유기용매를 이용한 고체상 추출
Wet Synthesis of Hydroxylammonium Nitrate (HAN) and Solid Phase Extraction Using Dual Organic Solvents
E-mail:
초록
수산화암모늄나이트레이트(HAN; NH3OHNO3)는 낮은 용융점과 증기압의 특성을 가지고 있고, 상대적으로 높은 산소균형을 이루고 있는 이온성 화합물이다. 본 연구에서는 높은 함량의 액상추진제를 제조하기 위한 산화제로 활용하기 위하여 이중용매를 적용하여 고체입자상으로 얻었다. 감압 하에서 액상의 HAN으로부터 수분을 증발시킨 후, 반용매로서 아세톤과 에탄올을 적용하여 추출한 입자상의 HAN에는 13.8 wt%의 수분이 포함되어 있었다. 아세톤을 단독으로 적용하였을 때, 합성수율은 질량기준으로 최대 88%이었고, TGA로 측정된 최대 함량은 86.2%, 분해온도는 160~205℃ 범위로 나타났다.
Hydroxylammonium nitrate (HAN; NH3OHNO3) is an ionic energy material having a low melting temperature and vapor pressure with a high oxygen balance. To utilize it as an oxidizer for a high content liquid mono-propellant, a dual solvent was used to obtain HAN in a solid particulate form. The dehydrated crystal from an aqueous HAN was washed with dual organic solvents including acetone and ethanol, finally resulting in the moisture content of 13.8 wt%. When acetone was applied as a single solvent, the maximum synthesis yield of 88%, the HAN content evaluated by TGA of 86.2%, and the decomposition temperature ranged 160℃ to 205℃ were achieved.
  1. Rios A, Irabien A, Hollmann F, Hernandez-Fernandez F, J. Chem., 2013, 1 (2013)
  2. Kamal F, Yann B, Rachid B, Charles K, Applications of Ionic Liquids in Science and Technology/Monograph, 1st ed., 447-454, InTech, Rijeka, Croatia (2011).
  3. Koh K, Chin J, Chik T, Propuls. Power Res., 2, 194 (2013)
  4. Kim W, Huang S, Kwon Y, Jo Y, J. Korean Appl. Sci. Tech., 30, 57 (2013)
  5. Dendage PS, Sarwade BD, Asthana S, Singh H, J. Energ. Mater., 19, 41 (2001)
  6. Amrousse R, Hori K, Fetimi W, Farhat K, Appl. Catal. B: Environ., 127, 121 (2012)
  7. Kappenstein C, Batonneau Y, Perianu EA, Wingborg N, Proceedings of the 2nd International Conference on Green Propellants for Space Propulsion (ESA SP-557), June 7-8, Chia Laguna (Cagliari), Sardinia, Italy (2004).
  8. Courtheoux L, Amariei D, Rossignol S, Kappenstein C, Appl. Catal. B: Environ., 62(3-4), 217 (2006)
  9. Lee HS, Thynell ST, Confined Rapid Thermolysis/FTIR Spectroscopy of Hydroxylammonium Nitrate, Pennsylvania State University, State College, USA (1997).
  10. Hoyani S, Patel R, Oommen C, Rajeev R, J. Therm. Anal. Calorim., 129, 1083 (2017)
  11. Hoyani S, Oommen C, Process for making solid hydroxylamine nitrate, WO2017033071A1 (2017).
  12. Kim WR, Park MJ, Kim SH, Jeon JK, Jo YM, Appl. Chem. Eng., 30(5), 591 (2019)
  13. Ouellette RJ, Rawn JD, Principles of Organic Chemistry, 1st ed., 240-245, Academic Press, Massachusetts, USA (2015).
  14. polak J, LU BCY, Can. J. Chem., 51, 4018 (1973)
  15. Vosen S, Combust. Sci. Technol., 68, 85-99 (1989).
  16. Esparza AA, Ferguson RE, Choudhuri A, Love ND, Shafirovich E, Combust. Flame, 193, 417 (2018)