화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.88, 224-232, August, 2020
Fluorocarbon versus hydrocarbon organosilicon surfactants for wettability alteration: A molecular dynamics approach
This paper presents a theoretical model based on molecular dynamics to represent and explain the experimental measurements of water droplet contact angles on fluorocarbon and hydrocarbon organosilicon surfactants of different chain lengths. In addition to the contact angles, we evaluated the distribution of the surfactants on the surface (surface density, packing degree, density profile, and coating thickness) and the interaction energies (surfactant-surfactant, surfactant-water, and water-water) to better understand the effect generated by the differences in the molecular structure of the surfactants. We found that the surface densities of the fluorocarbon surfactants were lower than those of hydrocarbon surfactants. This is because fluorocarbon chains are more rigid and because the attractive interaction energy between CF chains is less than that between CH chains because the fluorine-fluorine repulsive electrostatic interactions are stronger than the corresponding hydrogen-hydrogen inter- actions. The wettability alteration resulted from the modified surface-water interactions. The initial state was hydrophilic (water angle contact of 24°), produced by the high interaction energy between water and the silica surface. Upon application of surfactant, the surface-water interaction energies were considerably lowered, generating hydrophobic surfaces, with water angles contact between 87° and 99°.
  1. Wang Y, Xu H, Yu W, Bai B, Song X, Zhang J, Pet. Sci., 8(4), 463 (2011)
  2. Tuteja A, Choi W, Ma M, Mabry JM, Mazzella SA, Rutledge GC, Mckinley GH, Cohen RE, Science, 318(5856), 1618 (2007)
  3. Gao N, Yan Y, J. Bionic. Eng., 6(4), 335 (2009)
  4. Zhong L, Gong X, Soft Matter, 15(46), 9500 (2019)
  5. Kovalchuk NM, Trybala A, Starov V, Matar O, Ivanova N, Adv. Colloid Interface Sci., 210, 65 (2014)
  6. Zhang R, Qin N, Peng L, Tang K, Ye ZB, Appl. Surf. Sci., 258(20), 7943 (2012)
  7. Wang Y, Gong X, Adv. Mater. Interfaces, 4(16) (2017)
  8. Halverson JD, Maldarelli C, Couzis A, Koplik J, Chem. Eng. Sci., 64(22), 4657 (2009)
  9. Han TY, Shr JF, Wu CF, Hsieh CT, Thin Solid Films, 515(11), 4666 (2007)
  10. Zhang JM, Li G, Yang F, Xu N, Fan HX, Yuan T, Chen L, Appl. Surf. Sci., 259, 774 (2012)
  11. Akhavan B, Jarvis K, Majewski P, ACS Appl. Mater. Interfaces, 5(17), 8563 (2013)
  12. Pisarik M, Rosen MJ, Polakovicova M, Devinsky F, Lacko L, J. Colloid Interface Sci., 289(2), 560 (2005)
  13. Gong X, He S, ACS Omega, 5(8), 4100 (2020)
  14. Peng JY, Zhao XJ, Wang WF, Gong X, Langmuir, 35(25), 8404 (2019)
  15. Jiang G, Li Y, Ling L, Weixing X, Jiang S, Energy Sources Part A-Recovery Util. Environ. Eff., 37(9), 947 (2015)
  16. Jin J, Wang Y, Ren J, Nguyen AV, Nguyen TAH, J. Surfactants Deterg, 19(6), 1241 (2016)
  17. Moncayo-Riascos I, Cortes FB, Hoyos BA, Energy Fuels, 31(11), 11918 (2017)
  18. Evariste E, Gatley CM, Detty MR, Callow ME, Callow J, Biofouling, 29, 171 (2013)
  19. Sepehrinia K, Mohammadi A, Appl. Surf. Sci., 371, 349 (2016)
  20. Raeesi B, Morrow NR, Mason G, Colloids Surf. A: Physicochem. Eng. Asp., 436, 392 (2013)
  21. Zhang ZQ, Wang CL, Yan KF, Miner. Eng., 79, 31 (2015)
  22. Leroy F, Muller-Plathe F, J. Chem. Phys., 133(4), 044110 (2010)
  23. Black JE, Iacovella CR, Cummings PT, McCabe C, Langmuir, 31(10), 3086 (2015)
  24. Lafuma A, Quere D, Nat. Mater., 2(7), 457 (2003)
  25. Moncayo-Riascos I, de Leon J, Hoyos BA, Energy Fuels, 30(5), 3605 (2016)
  26. Sagisaka M, Narumi T, Niwase M, Narita S, Ohata A, James C, Yoshizawa A, de Givenchy ET, Guittard F, Alexander S, Eastoe J, Langmuir, 30(21), 6057 (2014)
  27. Jesionowski T, Krysztafkiewicz A, Appl. Surf. Sci., 172(1-2), 18 (2001)
  28. Weston JS, Jentoft RE, Grady BP, Resasco DE, Harwell JH, Ind. Eng. Chem. Res., 54(16), 4274 (2015)
  29. Pisarcik M, Devinsky F, Cent. Eur. J. Chem., 12(5), 577 (2014)
  30. Bagherzadeh SA, Englezos P, Alavi S, Ripmeester JA, J. Phys. Chem. B, 116(10), 3188 (2012)
  31. Szymczyk K, Chem. Phys., 433, 42 (2014)
  32. Yi H, Jia FF, Zhao YL, Wang W, Song SX, Li HQ, Liu C, Appl. Surf. Sci., 459, 148 (2018)
  33. Szymczyk K, Zdziennicka A, Janczuk B, Coll. Interfaces, 2(3), 26 (2018)
  34. Hu XY, Li Y, Sun HQ, Song XW, Li QW, Cao XL, Li ZQ, J. Phys. Chem. B, 114(27), 8910 (2010)
  35. Drzyhfala J, Adv. Colloid Interface Sci., 50, 148 (1994)
  36. Hirasaki GJ, Miller CA, Puerto M, SPE Int. (SPE 115386) (2011).
  37. Gong X, Zhang J, Jiang S, Chem. Commun., 56(20), 3054 (2020)
  38. Fuller M, Lloyd T, Geddes J, Surface-modifying agents for wettability modification. U.S. Patent 7,921,911, 2011.
  39. Moncayo-Riascos I, Hoyos BA, Energy Fuels, 32(5), 5701 (2018)
  40. Pellerite MJ, Wood EJ, Jones VW, J. Phys. Chem. B, 106(18), 4746 (2002)
  41. Hsieh CT, Chen JM, Huang YH, Kuo RR, Li CT, Shih HC, Lin TS, Wu CF, J. Vac. Sci. Technol. B, 24(1), 113 (2006)
  42. Genzer J, Efimenko K, Science, 290(5499), 2130 (2000)
  43. Winandy JE, Shupe TF, Wood Fiber, 42(4), 490 (2010)
  44. Song G, Min C, Mol. Phys., 111(7), 903 (2013)
  45. Lopez-Chavez E, et al., J. Mol. Graph. Model, 51, 128 (2014)
  46. McCaughan J, Iglauer S, Bresme F, Energy Procedia, 37, 5387 (2013)
  47. Xu LY, Yang XN, J. Colloid Interface Sci., 418, 66 (2014)
  48. Chen S, Wang J, Ma T, Chen D, J. Chem. Phys., 140(11), 114704 (2014)
  49. Lu H, Kind M, Terfort A, Zharnikov M, J. Phys. Chem. C, 117(49), 26166 (2013)
  50. Zenasni O, Jamison AC, Marquez MD, Lee TR, J. Fluor. Chem., 168, 128 (2014)
  51. Lewis JB, Vilt SG, Rivera JL, Jennings GK, McCabe C, Langmuir, 28(40), 14218 (2012)
  52. Wolfs M, Darmanin T, Guittard F, Surf. Coat. Technol., 259(PC), 594 (2014)
  53. Arco M, Dams JR, Sandstone having a modified wettability and a method for modifying the surface energy of sandstone. US Patent 7,629,298, 2009.
  54. Ho TA, Argyris D, Papavassiliou DV, Striolo A, Lee LL, Cole DR, Mol. Simul., 37(3), 172 (2011)
  55. Leroch S, Wendland M, J. Phys. Chem. C, 116, 26247 (2012)
  56. Cygan RT, Liang JJ, Kalinichev AG, J. Phys. Chem. B, 108(4), 1255 (2004)
  57. Zambrano HA, Walther JH, Jaffe RL, J. Mol. Liq., 198, 107 (2014)
  58. Vollmayr K, Kob W, Binder K, Phys. Rev. B, 54(22), 15808 (1996)
  59. Tersoff J, Phys. Rev. B, 38, 9902 (1988)
  60. Zhuravlev LT, Colloids Surf. A: Physicochem. Eng. Asp., 173(1-3), 1 (2000)
  61. Berendsen H, Grigera J, Straatsma T, J. Phys. Chem., 91(24), 6269 (1987)
  62. Fan H, Resasco DE, Striolo A, Langmuir, 27(9), 5264 (2011)
  63. Moncayo-Riascos I, Hoyos BA, Appl. Surf. Sci., 420, 691 (2017)
  64. Gaedt K, Holtje HD, J. Comput. Chem., 19(8), 935 (1998)
  65. Senapati S, Berkowitz ML, J. Phys. Chem. B, 107(47), 12906 (2003)
  66. Moncayo-Riascos I, Franco CA, Cortes FB, J. Chem. Eng. Data (2019).
  67. Rappe AK, Goddard WIII, J. Phys. Chem., 95(8340), 3358 (1991)
  68. Plimpton S, J. Comput. Phys., 117, 1 (1995)
  69. Humphrey W, Dalke A, Shulten A, J. Mol. Graph, 14(1), 33 (1996)
  70. Hockney RW, Eastwood JW, Computer Simulation Using Particles, CRC Press, New York, 1988.
  71. Rimola A, Costa D, Sodupe M, Lambert JF, Ugliengo P, Chem. Rev., 113(6), 4216 (2013)
  72. Schultz AJ, Patrone PN, Grossfield A, Roe DR, Siderius D, Zuckerman DM, Living J. Comput. Mol. Sci., 1(1), 1 (2018)