Korean Journal of Chemical Engineering, Vol.37, No.7, 1149-1156, July, 2020
Levulinic acid production through two-step acidic and thermal treatment of food waste using dilute hydrochloric acid
E-mail:
This research investigated the concept of a two-step acidic and thermal treatment for glucose extraction and levulinic acid (LA) production from food waste using dilute hydrochloric acid (DHA) as a catalyst, and subsequently analyzed the properties of the resulting humins. Glucose extraction was performed under various reaction conditions (reaction temperature range: 120-190 °C, DHA concentration range: 0.2-0.5% v/v); the glucose extraction yield of the acidic treatment step reached 83.17% under the optimal conditions (150 °C in 0.5% DHA). LA production was achieved during the thermal treatment step, which was investigated using two independent experiments to determine the influence of the reaction conditions (reaction time: 5-140min, concentration factor: 1.5-3.0, reaction temperature: 160-190 °C). The LA production process was affected by the concentration factor and the reaction temperature due to the low pH of solution and the rapid reaction rate, respectively. The thermal stability of the humins was highest at a concentration factor of 3.0 because of the 13.07 C/H ratio of the humins.
- Baugh KD, McCarty PL, Biotechnol. Bioeng., 31, 50 (1988)
- Brautigam KR, Jorissen J, Priefer C, Waste Manage. Res., 32, 683 (2014)
- Caretto A, Perosa A, ACS Sustainable Chem. Eng., 1, 989 (2013)
- Cherubini F, Energy Conv. Manag., 51(7), 1412 (2010)
- Das SP, Ravindran R, Ahmed S, Das D, Goyal D, Fontes CMGA, Goyal A, Appl. Biochem. Biotechnol., 167(6), 1475 (2012)
- Esteban J, Ladero M, Int. J. Food Sci. Technol., 53, 1095 (2018)
- Fitzpatrick SW, ACS Symp. Ser., 921, 271 (2006)
- Chen SS, Maneerung T, Tsang DCW, Ok YS, Wang CH, Chem. Eng. J., 328, 246 (2017)
- Girisuta B, Janssen LPBM, Heeres HJ, Chem. Eng. Res. Des., 84(A5), 339 (2006)
- Goto M, Obuchi R, Hiroshi T, Sakaki T, Shibata M, Bioresour. Technol., 93(3), 279 (2004)
- Hayes DJ, Fitzpatrick S, Hayes MH, Ross JR, Biorefineries:Ind. Processes Prod., 1, 139 (2006)
- Heltzel J, Patil SK, Lund CR, Reaction pathways and mechanisms in thermocatalytic biomass conversion II, Springer, Singapore, 105 (2016).
- Horvat J, Klaic B, Metelko B, Sunjic V, Croat. Chemica. Acta, 59, 429 (1986)
- Horvath IT, Mehdi H, Fabos V, Boda L, Mika LT, Green Chem., 10, 238 (2008)
- Jeong H, Jang SK, Hong CY, Kim SH, Lee SY, Lee SM, Choi JW, Choi IG, Bioresour. Technol., 225, 183 (2017)
- Ji H, Dong C, Yang G, Pang Z, BioResources, 14, 725 (2019)
- Kim SJ, Kwon HS, Kim GH, Um BH, Ind. Crop. Prod., 67, 395 (2015)
- Kim YS, Jang JY, Park SJ, Um BH, Waste Manage., 74, 231 (2018)
- Li X, Xu R, Yang J, Nie S, Liu D, Liu Y, Si C, Ind. Crop. Prod., 130, 184 (2019)
- Park MR, Kim HS, Kim SK, Jeong GT, Fuel Process. Technol., 172, 115 (2018)
- Patil SKR, Lund CRF, Energy Fuels, 25(10), 4745 (2011)
- Patil SKR, Heltzel J, Lund CRF, Energy Fuels, 26(8), 5281 (2012)
- Pileidis FD, Titirici MM, ChemSusChem, 9, 562 (2016)
- Rackemann DW, Doherty WO, Biofuels, Bioprod. Biorefin., 5, 198 (2011)
- Rackemann DW, Bartley JP, Doherty WO, Ind. Crop. Prod., 52, 46 (2014)
- Gong C, Wei J, Tang X, Zeng X, Sun Y, Lin L, Korean J. Chem. Eng., 36(5), 740 (2019)
- Rasmussen H, Sørensen HR, Meyer AS, Carbohydr. Res., 385, 36 (2014)
- Ravindran R, Jaiswal AK, Trends Biotechnol., 34, 58 (2016)
- Kim TH, Jeon YJ, Oh KK, Kim TH, Korean J. Chem. Eng., 30(6), 1339 (2013)
- Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, National Renewable Energy Lab, Golden, CO, USA (2006).
- Sluiter A, Ruiz R, Scarlata C, Sluiter J, Templeton D, National Renewable Energy Lab, Golden, CO, USA (2008).
- Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, National Renewable Energy Lab, Golden, CO, USA (2008).
- Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D, National Renewable Energy Lab, Golden, CO, USA (2010).
- Sumerskii IV, Krutov SM, Zarubin MY, Russ. J. Appl. Chem., 83, 320 (2010)
- Trivedi J, Bhonsle AK, Atray N, Academic Press., 19, 427 (2020)
- Tulaphol S, Hossain MA, Rahaman MS, Liu LY, Phung TK, Renneckar S, Sathitsuksanoh N, Energy Fuels, 34, 1764 (2019)
- Tsilomelekis G, Orella MJ, Lin Z, Cheng Z, Zheng W, Nikolakis V, Vlachos DG, Green Chem., 18, 1983 (2016)
- Um BH, Karim MN, Henk LL, Appl. Biochem. Biotechnol., 105, 115 (2003)
- Um BH, van Walsum GP, Appl. Biochem. Biotechnol., 168(2), 406 (2012)
- van Putten RJ, van der Waal JC, de Jong E, Rasrendra CB, Heeres HJ, de Vries JG, Chem. Rev., 113(3), 1499 (2013)
- Weingarten R, Cho J, Conner WC, Huber GW, Green Chem., 12, 1423 (2012)
- Weingarten R, Cho J, Xing R, Conner WC, Huber GW, ChemSusChem., 5, 1280 (2012)
- Weingarten R, Conner WC, Huber GW, Energy Environ. Sci., 5, 7559 (2012)
- Werpy T, Petersen G, National Renewable Energy Lab, Golden, CO, USA (2004).
- Xing R, Qi W, Huber GW, Energy Environ. Sci., 4, 2193 (2011)
- Yan K, Jarvis C, Gu J, Yan Y, Renew. Sust. Energ. Rev., 51, 986 (2015)
- Yang Z, Kang H, Guo Y, Zhuang G, Bai Z, Zhang H, Dong Y, Ind. Crop. Prod., 46, 205 (2013)