화학공학소재연구정보센터
Clean Technology, Vol.26, No.2, 96-101, June, 2020
거대조류 바이오가스를 연료로 하는 고체산화물 연료전지를 이용한 삼중발전
Trigeneration Based on Solid Oxide Fuel Cells Driven by Macroalgal Biogas
E-mail:
초록
이 논문에서는 3세대 바이오매스 중 거대조류, 즉 해조류 바이오매스로부터 유래된 바이오가스를 연료로 사용하여 열, 전력 및 수소를 생산하는 삼중발전의 타당성 평가를 수행하였다. 이를 위해 3 MW급 고체산화물 연료전지와 가스터빈, 그리고 유기 랭킨 사이클로 이루어진 상용 규모의 열, 전력 및 수소 생산공정을 공정모사기를 사용하여 설계, 모사하였고, 공정모사로부터 얻은 열 및 물질 수지를 통해 각 단위조작 장치의 가격을 추정하고 경제성을 분석하였다. 수소를 생산하기 위해 고체산화물 연료전지의 설계를 수정하였는데, 연료전지 내 애프터-버너를 제거하고 수성-가스 전환 반응기를 추가하였다. 공정모사 결과 설계된 삼중발전 공정은 시간당 3.47톤의 건조 갈조류 원료로부터 생산된 2톤의 바이오가스를 이용하여 2.3 MW의 전력과 50 kg hr-1의 수소를 37%의 효율로 생산한다. 이 결과를 토대로 가장 현실적인 시나리오에 대해 경제적으로 평가하고 BESP (breakeven electricity selling price)를 계산하였는데, ¢10.45 kWh-1로 기존의 고정 발전 대비 동등 이상의 수준으로 나타났다.
In this paper, the commercial feasibility of trigeneration, producing heat, power, and hydrogen (CHHP) and using biogas derived from macroalgae (i.e., seaweed biomass feedstock), are investigated. For this purpose, a commercial scale trigeneration process, consisting of three MW solid oxide fuel cells (SOFCs), gas turbine, and organic Rankine cycle, is designed conceptually and simulated using Aspen plus, a commercial process simulator. To produce hydrogen, a solid oxide fuel cell system is re-designed by the removal of after-burner and the addition of a water-gas shift reactor. The cost of each unit operation equipment in the process is estimated through the calculated heat and mass balances from simulation, with the techno-economic analysis following through. The designed CHHP process produces 2.3 MW of net power and 50 kg hr-1 of hydrogen with an efficiency of 37% using 2 ton hr-1 of biogas from 3.47 ton hr-1 (dry basis) of brown algae as feedstock. Based on these results, a realistic scenario is evaluated economically and the breakeven electricity selling price (BESP) is calculated. The calculated BESP is ¢10.45 kWh-1, which is comparable to or better than the conventional power generation. This means that the CHHP process based on SOFC can be a viable alternative when the technical targets on SOFC are reached.
  1. International Energy Outlook 2019, U.S. Energy Information Administration (https://www.eia.gov/outlooks/ieo/pdf/ieo2019. pdf (Accessed Apr. 2020)).
  2. Murphy JD, Drosg B, Allen E, Jerney J, Xia A, Herrmann C, IEA Bioenergy, pp. 1-38 (2015).
  3. Fasahati P, Saffron CM, Woo HC, Liu JJ, Energy Conv. Manag., 135, 297 (2017)
  4. Ormerod RM, Chem. Soc. Rev., 32(1), 17 (2003)
  5. Biogas and Fuel Cells Workshop Summary Report, National Renewable Energy Laboratory, Golden, CO, Report No. NREL/BK-5600-56523 (2013).
  6. Dietrich RU, Lindermeir A, Oelze J, Spieker C, Spitta C, Steffen M, ECS Trans., 35(1), 2669 (2011)
  7. Kim J, Sastri B, Conrad R, TechConnect Briefs, 2, 205 (2017)
  8. Multiyear Research, Development and Demonstration Plan, Fuel Cell Technologies Office, Department of Energy (2017).
  9. Vora SD, Department of Energy Office of Fossil Energy’s Solid Oxide Fuel Cell (SOFC) Program, 17th Annual SOFC Workshop, Pittsburgh, PA, July 19-21, (2016).
  10. Eveloy Valerie, Karunkeyoon Wirinya, Rodgers Peter, Al Alili Ali, Int. J. Hydrog. Energy, 41(31), 13843 (2016)
  11. Arsalis A, J. Power Sources, 181(2), 313 (2008)
  12. Trendewicz AA, Braun RJ, J. Power Sources, 233, 380 (2013)
  13. Cozzolino R, Lombardi L, Tribioli L, Renew. Energy, 111, 781 (2017)
  14. Zhang W, Croiset E, Douglas PL, Fowler MW, Entchev E, Energy Conv. Manag., 46(2), 181 (2005)
  15. Valentina IE, Msc. Thesis, Pukyong National University, Busan, Korea, (2018).
  16. Liu J, Clean Technol., 24(4), 357 (2018)
  17. Li XP, Ogden J, Yang C, J. Power Sources, 241, 668 (2013)
  18. Solar Trough Organic Rankine Electricity System (STORES) Stage 1, Golden, CO, Report No. NREL/SR-550-39433 (2006).
  19. Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol, Golden, CO, Report No. NREL/TP-5100-47764 (2011).
  20. Turton R, Bailie RC, Whiting WB, Shaeiwitz JA, Bhattacharyya D, Analysis, Synthesis, and Design of Chemical Processes, Fourth Edition, Prentice Hall, (2012).
  21. Ghirardo F, Santin M, Traverso A, Massardo A, Int. J. Hydrog. Energy, 36(13), 8134 (2011)