화학공학소재연구정보센터
Polymer(Korea), Vol.44, No.4, 445-450, July, 2020
PLGA/PEO 블렌드의 수용성 및 기계적 특성에 미치는 사슬간 수소결합의 영향
Effect of Interchain Hydrogen Bond on the Water Solubility and Mechanical Properties of PLGA/PEO Blend
E-mail:,
Polyethylene oxide (PEO) possesses poor mechanical properties, which limits its application. For the purpose of improving the mechanical properties of water-soluble films, blend of polylactic glycolic acid (PLGA) with PEO was prepared by melt blending. The hydrogen bonding between PEO and PLGA was investigated by Fourier transform infrared spectrometer. The crystallization behavior, water solubility, and mechanical properties were evaluated. The results showed that there was a hydrogen bonding force between PLGA and PEO, and this force can improve the mechanical strength and water absorption of the film. When the PLGA content reached 20 wt%, the tensile strength and the elongation at break achieved a maximum 26.1 MPa and 771.2%, respectively. Compared to neat PEO, blend with 10 wt% of PLGA had considerably higher water absorption capacity. When the PLGA content was 40 wt%, the film would not disperse in water.
  1. Lanigan RS, Cosmetic E, Int. J. Toxicol., 19, 29 (2000)
  2. Lee BS, J. Mol. Liq., 262, 527 (2018)
  3. Ezzati P, Ghasemi I, Karrabi M, Azizi H, Fortelny I, Polym. Korea, 38(4), 449 (2014)
  4. Goujon LJ, Khaldi A, Maziz A, Plesse C, Nguyen GTM, Aubert PH, Vidal F, Chevrot C, Teyssie D, Macromolecules, 44(24), 9683 (2011)
  5. Noor SAM, Ahmad A, Rahman MYA, Talib IA, Ionics, 16, 161 (2009)
  6. Tudryn GJ, O'Reilly MV, Dou SC, King DR, Winey KI, Runt J, Colby RH, Macromolecules, 45(9), 3962 (2012)
  7. Zuo X, Zuo X, Liu XM, Cai F, Yang F, Shen XD, Liu G, J. Mater. Chem., 22, 22265 (2012)
  8. Danhier F, Ansorenaa E, Silvaa JM, Cocoa R, Bretona AL, Preat V, J. Control. Release, 161, 505 (2012)
  9. Kim HL, Yoo H, Park HJ, Kim YG, Lee D, Kang YS, Khang G, Polym. Korea, 35(1), 7 (2011)
  10. Ajioka M, Enomoto K, Suzuki K, Yamaguchi A, Bull. Chem. Soc. Jpn., 68, 2125 (1995)
  11. Dong CM, Qiu KY, Gu ZW, Feng XD, J. Polym. Sci. A: Polym. Chem., 38(23), 4179 (2000)
  12. Moon SI, Deguchi K, Miyamoto M, Kimura Y, Polym. Int., 53, 254 (2004)
  13. Wang ZY, Zhao YM, Wang F, Wang J, J. Appl. Polym. Sci., 99(1), 244 (2006)
  14. Vert M, Mauduit J, Li S, Biomaterials, 15, 1209 (1994)
  15. Lutz JF, Lehn JM, Meijer EW, Matyjaszewski K, Nat. Rev. Mater., 1, 16024 (2016)
  16. ten Brinke G, Ruokolainen J, Ikkala O, in Hydrogen Bonded Polymers, Springer, Berlin, Heidelberg, pp 113-177 (2007).
  17. Guo MY, Pitet LM, Wyss HM, Vos M, Dankers PYW, Meijer EW, J. Am. Chem. Soc., 136(19), 6969 (2014)
  18. Wang Y, Li T, Li S, Guo R, Sun J, ACS Appl. Mater. Inter.,, 7, 13597 (2015)
  19. Wang ZI, Xua JL, Wua LJ, Chen X, Yang SG, Liu HC, Zhou XJ, Chinese J. Polym. Sci., 33, 1334 (2015)
  20. Ortega MJS, Csaba N, Gonzalez L, Gonzalez DB, Vinuesa JLO, Alonso MJ, Colloid Polym. Sci., 288, 141 (2010)
  21. Ibrahim S, Johan MR, Int. J. Electrochem. Sci., 7, 2596 (2012)
  22. Wang S, Ren J, Lia W, Sun R, Liu S, Carbohydr. Polym., 103, 94 (2014)
  23. Dong J, Ozaki Y, Nakashima K, Macromolecules, 30(4), 1111 (1997)
  24. Khutoryanskiy VV, Dubolazov AV, Nurkeeva ZS, Mun GA, Langmuir, 20(9), 3785 (2004)
  25. Petrov AI, Antipov AA, Sukhorukov GB, Macromolecules, 36(26), 10079 (2003)