Polymer(Korea), Vol.44, No.4, 542-548, July, 2020
이종원소와 결정성을 제어한 실크 카본 펠트의 리튬-TEMPO 흐름 전지에서의 전기화학적 특성 연구
Heteroatom and Crystallinity-Controlled Carbon Felts Based on Silk for Li-TEMPO Redox Flow Battery
E-mail:,
초록
본 연구에서는 실크섬유를 800 oC에서 2800 oC까지 다양한 온도로 열처리하여 이종원소와 결정성을 제어한 카본 펠트를 제조하였다. 열처리별로 제조한 카본 펠트의 이종원소와 미세구조의 상관관계를 체계적인 분석을 통해 열처리 온도가 높아질수록 이종원소의 함량은 감소하고 탄소의 결정구조가 발달하여 전기전도도가 향상되는 것을 확인하였다. 이종원소와 결정성을 제어한 실크 카본 펠트(SCFs)를 Li-TEMPO 레독스 흐름 전지(redox flow battery, RFB) 시스템의 전극으로 사용하여 전기화학 반응성을 비교한 결과, 2800 °C에서 열처리한 카본 펠트(SCF2800)가 800 °C에서 열처리한 카본 펠트(SCF800)보다 10 mV s-1 주사전압속도에서의 산화 환원 전위차가 ~61 mV 만큼 줄어든 것을 확인하였다. 율특성 분석 결과 2 mA cm-2 전류밀도에서 초기 0.1 mA cm-2 대비 용량 회복률이 낮은 열처리 온도의 카본 펠트보다 ~24% 만큼 높은 것을 확인하였다. 게다가 임피던스 저항 측정 또한 SCF2800의 높은 전기전도도로 인해 전해질 계면과 전극에서의 전하 전달이 가장 잘 발생하는 것을 확인하였다. 이 연구 결과를 통해 일반적으로 이종원소의 촉매효과가 중요하다고 알려진 RFB와는 달리 전극의 전기화학 반응성은 촉매효과보다 전극의 전기전도도에 의한 영향이 더 지배적임을 확인할 수 있었다.
Silk fiber, a precursor rich in heteroatom, was heat-treated at various temperatures from 800 to 2800 °C to prepare carbon felts that have different heteroatom contents and carbon microstructures. With the heat treatment temperatures, the heteroatom contents of the silk-derived carbon felts (SCFs) gradually decreased, their graphitic carbon structures were continuously developed, and their electrical conductivities were linearly improved. By comparing with electrochemical reactivities of SCFs as an electrode in the lithim-2,2,6,6-tetramethylpiperidine-1oxyl (Li-TEMPO) redox flow battery (Li-TEMPO RFB) system, it was found that a redox potential separation of the SCFs heat-treated at 2800 °C (SCF2800) was reduced by ~61 mV at 10 mV s-1 compared with the SCF heat-treated at 800 °C (SCF800). In addition, in a galvanostatic charge/discharge tests at current densities from 0.1 to 2 mA g-1, the capacity retention of SCF2800 is ~24% higher than that of SCF800. Moreover, in an impedance resistance measurement, the charge transfer resistance of SCF2800 which occurs in an interface between electrolyte and electrodes was much lower than that of SCF800. These results provide that the electrical conductivity of electrode materials is the key on the electrochemical performances of Li-TEMPO RFBs which is much more significant than the catalytic effect of heteroatoms on the surface of electrode materials.
- Rosenberg DM, Bodaly RA, Usher PJ, Global Environ. Change, 5, 127 (1995)
- Lee HM, Kim HG, An KH, Kim BJ, J. Nanosci. Nanotechnol., 15, 8797 (2015)
- Edenhofer O, Seyboth K, Creutzig F, Schlcmer S, Annu. Rev. Environ. Resour., 38, 168 (2013)
- Weitemeyer S, Kleinhans D, Vogt T, Agert C, Renew. Energy, 75, 14 (2015)
- Cook D, Davidsdottir B, Petursson JG, J. Renew. Sustain. Energy, 49, 211 (2015)
- Wang W, Luo QT, Li B, Wei XL, Li LY, Yang ZG, Adv. Funct. Mater., 23(8), 970 (2013)
- Leung P, Li XH, de Leon CP, Berlouis L, Low CTJ, Walsh FC, RSC Adv., 2, 10125 (2012)
- Skyllas-Kazacos M, Chakrabarti MH, Hajimolana SA, Mjalli FS, Saleem M, J. Electrochem. Soc., 158, 55 (2011)
- Winsberg J, Stolze C, Muench S, Liedl F, Hager MD, Schubert US, ACS Energy Lett., 1, 976 (2016)
- Nishide H, Iwasa S, Pu YJ, Suga T, Nakahara K, Satoh M, Electrochim. Acta, 50(2-3), 827 (2004)
- Nakahara K, Iwasa S, Satoh M, Morioka Y, Iriyama J, Suguro M, Hasegawa E, Chem. Phys. Lett., 359(5-6), 351 (2002)
- Leedy DW, Muck DL, J. Am. Chem. Soc., 93, 4264 (1971)
- Wei XL, Xu W, Vijayakumar M, Cosimbescu L, Liu TB, Sprenkle V, Wang W, Adv. Mater., 26(45), 7649 (2014)
- Pezeshki AM, Clement JT, Veith GM, Zawodzinski TA, Mench MM, J. Power Sources, 30, 333 (2015)
- Wu XX, Xu HF, Shen Y, Xu PC, Lu L, Fu J, Zhao H, Electrochim. Acta, 138, 264 (2014)
- Chen JZ, Liao WY, Hsieh WY, Hsu CC, Chen YS, J. Power Sources, 274, 894 (2015)
- Kim KJ, Kim YJ, Kim JH, Park MS, Mater. Chem. Phys., 131(1-2), 547 (2011)
- Wu L, Shen Y, Yu L, Xi J, Qiu X, Nano Energy, 28, 19 (2016)
- Lee ME, Kwak HW, Jin HJ, Carbon Lett., 28, 105 (2018)
- Li B, Gu M, Nie Z, Wei X, Wang C, Sprenkle V, Wang W, Nano Lett., 14, 158 (2014)
- Gonzalez Z, Sanchez A, Blanco C, Granda M, Menendez R, Santamaria R, Electrochem. Commun., 13, 1379 (2011)
- Nikiforidis G, Daoud WA, Electrochim. Acta, 168, 394 (2015)
- Yue L, Li W, Sun F, Zhao L. Xing L, Carbon, 48, 3079 (2010)
- Sun B, Skyllas-Kazacos M, Electrochim. Acta, 37, 2459 (1992)
- Singh KP, Song MY, Yu JS, J. Mater. Chem. A, 2, 18115 (2014)
- Cho SY, Yun YS, Jang D, Jeon JW, Kim BH, Lee S, Jin HJ, Nat. Commun., 8, 74 (2017)
- Kudin KN, Ozbas B, Schniepp HC, Prud'homme RK, Aksay IA, Car R, Nano Lett., 8, 36 (2008)
- Short MA, Walker PL, Carbon, 1, 3 (1963)
- Lee ME, Jin HJ, Polym. Sci. Technol., 28(3), 201 (2017)
- Liu T, Li XF, Nie HJ, Xu C, Zhang HM, J. Power Sources, 286, 73 (2015)
- Lee ME, Jin HJ, Yun YS, RSC Adv., 68, 43227 (2017)
- Li W, Liu J, Yan C, Carbon, 49, 3463 (2011)
- Li Y, Parrondo J, Sankarasubramanian S, Ramani V, J. Phys. Chem. C, 123, 6370 (2019)
- Park M, Jung Y, Kim J, Lee H, Cho J, Nano Lett., 13, 4833 (2013)
- Liu T, Li X, Nie H, Xu C, Zhang H, J. Power Sources, 285, 73 (2015)