화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.37, No.8, 1295-1305, August, 2020
Computational approaches to the exsolution phenomenon in perovskite oxides with a view to design highly durable and active anodes for solid oxide fuel cells
E-mail:
Computational approaches have been used effectively in material design for solid oxide fuel cells (SOFCs). As a way to improve the performance and stability of anode materials in SOFCs, the exsolution phenomenon has been extensively taken advantage of. In the exsolution process, highly active and stable nanoparticles (NPs) are formed uniformly over the surface of the host oxide due to the anchoring effects of exsolved NPs in the host’s structure. In this review, we particularly focus on how computational approaches such as density functional theory calculation, phase field modeling, and analytic methods can be used to understand the exsolution phenomenon; this knowledge can then be exploited to design enhanced anode materials for SOFCs. We first review the nature of exsolution and then look into catalytic applications of exsolved NPs. From this point, we investigate how to engineer exsolved nanoparticles to maximize their catalytic activity with a view that any enhanced performance will aid future applications.
  1. Kim JH, Park YM, Kim H, Korean J. Chem. Eng., 29(11), 1541 (2012)
  2. Liu M, Choi Y, Yang L, Blinn K, Qin W, Liu P, Liu M, Nano Energy, 1, 448 (2012)
  3. Singh D, Hernandez-Pacheco E, Hutton PN, Patel N, Mann MD, J. Power Sources, 142(1-2), 194 (2005)
  4. Abdalla AM, Hossain S, Azad AT, Petra PMI, Begum F, Eriksson SG, Azad AK, Renew. Sust. Energ. Rev., 82, 353 (2018)
  5. Lee JY, Yoo M, Cha K, Lim TW, Hur T, Int. J. Hydrog. Energy, 34(10), 4243 (2009)
  6. Haberman B, Baca CM, Ohrn T, ECS Transactions, 35, 451 (2011)
  7. Yang ZG, Zhang JL, Kintner-Meyer MCW, Lu XC, Choi DW, Lemmon JP, Liu J, Chem. Rev., 111(5), 3577 (2011)
  8. Chen Y, Zhou W, Ding D, Liu M, Ciucci F, Tade M, Shao Z, Adv. Eng. Mater., 5, 150053 (2015)
  9. Cowin PI, Petit CTG, Lan R, Irvine JTS, Tao S, Adv. Eng. Mater., 1, 314 (2011)
  10. Tietz F, Raj IA, Zahid M, Stover D, Solid State Ion., 177(19-25), 1753 (2006)
  11. Petric A, Huang P, Tietz F, Solid State Ion., 135(1-4), 719 (2000)
  12. Ullmann H, Trofimenko N, Tietz F, Stover D, Ahmad-Khanlou A, Solid State Ion., 138(1-2), 79 (2000)
  13. Park YM, Kim H, Korean J. Chem. Eng., 30(11), 2017 (2013)
  14. Kaur P, Singh K, Ceram. Int., 46, 5521 (2020)
  15. Piao JH, Sun KN, Zhang NQ, Chen XB, Xu S, Zhou DR, J. Power Sources, 172(2), 633 (2007)
  16. Kim JH, Park YM, Kim T, Kim H, Korean J. Chem. Eng., 29(3), 349 (2012)
  17. Yu T, Mao X, Ma G, J. Alloy. Compd., 608, 30 (2014)
  18. Koo B, Kim K, Kim JK, Kwon H, Han JW, Jung W, Joule, 2, 1476 (2018)
  19. Khan MS, Lee SB, Song RH, Lee JW, Lim TH, Park SJ, Ceram. Int., 42, 35 (2016)
  20. Caillot T, Gauthier G, Delichere P, Cayron C, Aires FJCS, J. Catal., 290, 158 (2012)
  21. Ding HP, Tao ZT, Liu S, Yang YT, J. Power Sources, 327, 573 (2016)
  22. Shen J, Chen YB, Yang GM, Zhou W, Tade MO, Shao ZP, J. Power Sources, 306, 92 (2016)
  23. Liu W, Flytzanistephanopoulos M, J. Catal., 153(2), 304 (1995)
  24. Pudmich G, Boukamp BA, Gonzalez-Cuenca M, Jungen W, Zipprich W, Tietz F, Solid State Ion., 135(1-4), 433 (2000)
  25. Neagu D, Oh TS, Miller DN, Menard H, Bukhari SM, Gamble R, Gorte RJ, Vohs JM, Irvine JTS, Nat. Commun., 6, 8120 (2015)
  26. Kim S, Kim C, Lee JH, Shin J, Lim TH, Kim G, Electrochim. Acta, 225, 399 (2017)
  27. Kim KJ, Rath MK, Kwak HH, Kim HJ, Han JW, Hong ST, Lee KT, ACS Catal., 9, 1172 (2019)
  28. Jacobs R, Mayeshiba T, Booske J, Morgan D, Adv. Eng. Mater., 8, 170270 (2018)
  29. Hwang B, Kwon H, Ko J, Kim BK, Han JW, Appl. Surf. Sci., 429, 87 (2018)
  30. Sapountzi FM, Zhao C, Boreave A, Retailleau-Mevel L, Niakolas D, Neofytidis C, Vernoux P, Catal. Sci. Technol., 8, 1578 (2018)
  31. Cho A, Ko J, Kim BK, Han JW, ACS Catal., 9, 967 (2019)
  32. Kwon H, Lee W, Han JW, RSC Adv., 6, 69782 (2016)
  33. Koo B, Kwon H, Kim Y, Seo HG, Han JW, Jung W, Energy Environ. Sci., 11, 71 (2018)
  34. Irvine JTS, Neagu D, Verbraeken MC, Chatzichristodoulou C, Graves C, Mogensen MB, Nat. Energy, 1, 15014 (2016)
  35. Fan L, Zhu B, Su PC, He C, Nano Energy, 45, 148 (2018)
  36. Li Y, Zhang W, Zheng Y, Chen J, Yu B, Chen Y, Liu M, Chem. Soc. Rev., 46, 6345 (2017)
  37. Kwak NW, Jeong SJ, Seo HG, Lee S, Kim Y, Kim JK, Byeon P, Chung SY, Jung W, Nat. Commun., 9, 4829 (2018)
  38. Madsen BD, Kobsiriphat W, Wang Y, Marks LD, Barnett S, ECS Trans., 35, 1339 (2011)
  39. Neagu D, Kyriakou V, Roiban IL, Aouine M, Tang C, et al., ACS Nano, 13, 12996 (2019)
  40. Gohier A, Ewels CP, Minea TM, Djouadi MA, Carbon, 46, 1331 (2008)
  41. Zhu Y, Zhou W, Ran R, Chen Y, Shao Z, Liu M, Nano Lett., 16, 512 (2016)
  42. Sun YF, Zhang YQ, Chen J, Li JH, Zhu YT, Zeng YM, Amirkhiz BS, Li J, Hua B, Luo JL, Nano Lett., 16, 5303 (2016)
  43. Sun YF, Li JH, Wang MN, Hua B, Li J, Luo JL, J. Mater. Chem. A, 3, 14625 (2015)
  44. Li HX, Sun GH, Xie K, Qi WT, Qin QQ, Wei HS, Chen SG, Wang Y, Zhang Y, Wu YC, Int. J. Hydrog. Energy, 39(36), 20888 (2014)
  45. Bierschenk DM, Potter-Nelson E, Hoel C, Liao YG, Marks L, Poeppelmeier KR, Barnett SA, J. Power Sources, 196(6), 3089 (2011)
  46. Wei H, Xie K, Zhang J, Zhang Y, Wang Y, Qin Y, Cui J, Yan J, Wu Y, Sci. Rep., 4, 5156 (2014)
  47. Du Z, Zhao H, Yi S, Xia Q, Gong Y, Zhang Y, Cheng X, Li Y, Gu L, Swierczek K, ACS Nano, 10, 8660 (2016)
  48. Hua B, Yan N, Li M, Sun YF, Zhang YQ, Li J, Etsell T, Sarkar P, Luo JL, Adv. Mater., 28(40), 8922 (2016)
  49. Lai KY, Manthiram A, Chem. Mater., 30, 2838 (2018)
  50. Neagu D, Tsekouras G, Miller DN, Menard H, Irvine JTS, Nat. Chem., 5, 916 (2013)
  51. Tsekouras G, Neagu D, Irvine JT, Energy Environ. Sci., 6, 256 (2013)
  52. Sun Y, Li J, Zeng Y, Amirkhiz BS, Wang M, Behnamian Y, Luo J, J. Mater. Chem. A, 3, 11048 (2015)
  53. Jiang G, Yan F, Wan S, Zhang Y, Yan M, Phys. Chem. Chem. Phys., 21, 10902 (2019)
  54. Kwon O, Sengodan S, Kim K, Kim G, Jeong HY, Shin J, Ju YW, Han JW, Kim G, Nat. Commun., 8, 15967 (2017)
  55. Gao Y, Chen D, Saccoccio M, Lu Z, Ciucci F, Nano Energy, 27, 499 (2016)
  56. Lv H, Lin L, Zhang X, Song Y, Matsumoto H, Zeng C, Ta N, Liu W, Gao D, Wang G, Bao X, Adv. Mater., 32, 190619 (2020)
  57. Kwon O, Kim K, Joo S, Jeong HY, Shin J, Han JW, Sengodan S, Kim G, J. Mater. Chem. A, 6, 15947 (2018)
  58. Ko J, Kwon H, Kang H, Kim BK, Han JW, Phys. Chem. Chem. Phys., 17, 3123 (2015)
  59. Kim K, Baek S, Kim JJ, Han JW, Appl. Surf. Sci., 510, 145349 (2020)
  60. Joo S, Kwon O, Kim K, Kim S, Kim H, Shin J, Jeong HY, Sengodan S, Han JW, Kim G, Nat. Commun., 10, 697 (2019)
  61. Han H, Park J, Nam SY, Kim KJ, Choi GM, Parkin SSP, Jang HM, Irvine JTS, Nat. Commun., 10, 1471 (2019)
  62. Lv H, Lin L, Zhang X, Gao D, Song Y, Zhou Y, Liu Q, Wang G, Bao X, J. Mater. Chem. A, 7, 11967 (2019)
  63. Jo YR, Koo B, Seo MJ, Kim JK, Lee S, Kim K, Han JW, Jung W, Kim BJ, J. Am. Chem. Soc., 141(16), 6690 (2019)
  64. Oh TS, Rahani EK, Neagu D, Irvine JTS, Shenoy VB, Gorte RJ, Vohs JM, J. Phys. Chem. Lett., 6, 5106 (2015)
  65. Ess D, Gagliardi L, Hammes-Schiffer S, Chem. Rev., 119(11), 6507 (2019)