Korean Journal of Chemical Engineering, Vol.37, No.8, 1419-1426, August, 2020
Colloidal synthetic methods of amorphous molybdenum phosphide nanoparticles for hydrogen evolution reaction catalysts
E-mail:
Transition metal phosphides (TMPs) have recently emerged as promising hydrogen evolution reaction (HER) catalytic alternatives to platinum. Among them, molybdenum phosphide (MoP) has attracted extensive attention due to its high electrical conductivity, good stability, and Pt-like electronic structure; however, there is no systematic comparison of its different colloidal synthetic routes. This study systematically compares two colloidal synthetic methods, one-pot and two-step, for amorphous MoP and the associated morphological changes during their reaction time. The amorphous MoP nanoparticles synthesized via the two-step method within 4 h exhibited the highest HER performance with an overpotential of 177 mV in 0.50 M H2SO4 for a current density of -10 mA cm 2; this might be due to their highly developed Mo-P bondings revealed by X-ray photoelectron spectroscopy analysis. Thus, this work demonstrates that the HER catalytic performance of MoP can be significantly influenced by its synthetic method and reaction time.
Keywords:Hydrogen Evolution Reaction;Transition Metal Phosphide;Molybdenum Phosphide Nanoparticle;Colloidal Nanoparticle;Electrocatalyst
- Lubitz W, Tumas W, Chem. Rev., 107(10), 3900 (2007)
- Turner JA, Science, 305, 972 (2004)
- Lewis NS, Nocera DG, Proc. Natl. Acad. Sci. USA, 103, 15729 (2006)
- Du P, Eisenberg R, Energy Environ. Sci., 5, 6012 (2012)
- Bak T, Nowotny J, Rekas M, Sorrell CC, Int. J. Hydrog. Energy, 27(10), 991 (2002)
- Benck JD, Chen Z, Kuritzky LY, Forman AJ, Jaramillo TF, ACS Catal., 2, 1916 (2012)
- Walter MG, Warren EL, McKone JR, Boettcher SW, Mi QX, Santori EA, Lewis NS, Chem. Rev., 110(11), 6446 (2010)
- Hara Y, Minami N, Matsumoto H, Itagaki H, Appl. Catal. A: Gen., 332(2), 289 (2007)
- Gray HB, Nat. Chem., 1, 7 (2009)
- Callejas JF, McEnaney JM, Read CG, Crompton JC, Biacchi AJ, Popczun EJ, Schaak RE, ACS Nano, 8, 11101 (2014)
- Meyer S, Nikiforov AV, Petrushina IM, Kohler K, Christensen E, Jensen JO, Bjerrum NJ, Int. J. Hydrog. Energy, 40(7), 2905 (2015)
- Chen WF, Muckerman JT, Fujita E, Chem. Commun., 49, 8896 (2013)
- Liu Q, Tian J, Cui W, Jiang P, Cheng N, Asiri AM, Sun X, Angew. Chem.-Int. Edit., 53, 6710 (2014)
- Popczun EJ, McKone JR, Read CG, Biacchi AJ, Wiltrout AM, Lewis NS, Schaak RE, J. Am. Chem. Soc., 135(25), 9267 (2013)
- Kibsgaard J, Tsai C, Chan K, Benck JD, Nørskov JK, Abild-Pedersen F, Jaramillo TF, Energy Environ. Sci., 8, 3022 (2015)
- Kong D, Cha JJ, Wang H, Lee HR, Cui Y, Energy Environ. Sci., 6, 3553 (2013)
- Tsai C, Chan K, Nørskov JK, Abild-Pedersen F, Surf. Sci., 640, 133 (2015)
- Bonde J, Moses PG, Jaramillo TF, Nørskov JK, Chorkendorff I, Faraday Discuss., 140, 219 (2009)
- Guo Y, Park T, Yi JW, Henzie J, Kim J, Wang Z, Yamauchi Y, Adv. Mater., 31, 180713 (2019)
- Huang Z, Chen Z, Chen Z, Lv C, Humphrey MG, Zhang C, Nano Energy, 9, 373 (2014)
- Kibsgaard J, Jaramillo TF, Angew. Chem.-Int. Edit., 53, 14433 (2014)
- Popczun EJ, Read CG, Roske CW, Lewis NS, Schaak RE, Angew. Chem.-Int. Edit., 53, 5427 (2014)
- Xiao P, Chen W, Wang X, Adv. Eng. Mater., 5, 150098 (2015)
- Shi Y, Zhang B, Chem. Soc. Rev., 45, 1529 (2016)
- Ha DH, Han B, Risch M, Giordano L, Yao KPC, Karayaylali P, Shao-Horn Y, Nano Energy, 29, 37 (2016)
- Callejas JF, Read CG, Popczun EJ, McEnaney JM, Schaak RE, Chem. Mater., 27, 3769 (2015)
- Son CY, Kwak IH, Lim YR, Park J, Chem. Commun., 52, 2819 (2016)
- Schipper DE, Zhao Z, Thirumalai H, Leitner AP, Donaldson SL, Kumar A, Whitmire KH, Chem. Mater., 30, 3588 (2018)
- Feng L, Vrubel H, Bensimon M, Hu X, Phys. Chem. Chem. Phys., 16, 5917 (2014)
- Stern LA, Feng L, Song F, Hu X, Energy Environ. Sci., 8, 2347 (2015)
- McEnaney JM, Crompton JC, Callejas JF, Popczun EJ, Read CG, Lewis NS, Schaak RE, Chem. Commun., 50, 11026 (2014)
- Xing ZC, Liu Q, Asiri AM, Sun XP, Adv. Mater., 26(32), 5702 (2014)
- McEnaney JM, Crompton JC, Callejas JF, Popczun EJ, Biacchi AJ, Lewis NS, Schaak RE, Chem. Mater., 26, 4826 (2014)
- Xiao W, Zhang L, Bukhvalov D, Chen Z, Zou Z, Shang L, Zhang T, Nano Energy, 70, 104445 (2020)
- Yan H, Jiao Y, Wu A, Tian C, Zhang X, Wang L, Fu H, Chem. Commun., 52, 9530 (2016)
- Vrubel H, Hu X, Angew. Chem.-Int. Edit., 51, 12703 (2012)
- Park H, Encinas A, Scheifers JP, Zhang Y, Fokwa BPT, Angew. Chem.-Int. Edit., 56, 5575 (2017)
- Jin YS, Wang HT, Li JJ, Yue X, Han YJ, Shen PK, Cui Y, Adv. Mater., 28(19), 3785 (2016)
- Lu Z, Zhang H, Zhu W, Yu X, Kuang Y, Chang Z, Sun X, Chem. Commun., 49, 7516 (2013)
- Wang DZ, Pan Z, Wu ZZ, Wang ZP, Liu ZH, J. Power Sources, 264, 229 (2014)
- Mitsutaka O, Susumu T, Masakazu I, Masatake H, Chem. Lett., 27, 315 (1998)
- Li W, Shah SI, Huang CP, Jung O, Ni C, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., 96, 247 (2002)
- Christensen ST, Feng H, Libera JL, Guo N, Miller JT, Stair PC, Elam JW, Nano Lett., 10, 3047 (2010)
- Christensen ST, Elam JW, Rabuffetti FA, Ma Q, Weigand SJ, Lee B, Bedzyk MJ, Small, 5, 750 (2009)
- Tsai SC, Song YL, Tsai CS, Yang CC, Chiu WY, Lin HM, J. Mater. Sci., 39(11), 3647 (2004)
- Teoh WY, Amal R, Madler L, Nanoscale, 2, 1324 (2010)
- Khaydarov RA, Khaydarov RR, Gapurova O, Estrin Y, Scheper T, J. Nanopart. Res., 11, 1193 (2009)
- Zhou ZY, Tian N, Huang ZZ, Chen DJ, Sun SG, Faraday Discuss., 140, 81 (2009)
- Ma H, Yin B, Wang S, Jiao Y, Pan W, Huang S, Meng F, ChemPhysChem., 5, 68 (2004)
- Donega CDM, Chem. Soc. Rev., 40, 1512 (2011)
- Nie ZH, Petukhova A, Kumacheva E, Nat. Nanotechnol., 5(1), 15 (2010)
- Talapin DV, Lee JS, Kovalenko MV, Shevchenko EV, Chem. Rev., 110(1), 389 (2010)
- Cho G, Park Y, Hong YK, Ha DH, Nano Convergence, 6, 17 (2019)
- Lindstedt E, Reitti M, Olofsson B, J. Org. Chem., 82, 11909 (2017)
- Dong H, Zhu M, Yoon JA, Gao H, Jin R, Matyjaszewski K, J. Am. Chem. Soc., 30, 12852 (2008)
- Hussain F, Shaban SM, Kim JH, Kim DH, Korean J. Chem. Eng., 36(6), 988 (2019)
- Park J, Joo J, Kwon SG, Jang Y, Hyeon T, Angew. Chem.-Int. Edit., 46, 4630 (2007)
- Muthuswamy E, Kharel PR, Lawes G, Brock SL, ACS Nano, 3, 2383 (2009)
- Liu J, Meyns M, Zhang T, Arbiol J, Cabot A, Shavel A, Chem. Mater., 30, 1799 (2018)
- Doan-Nguyen VVT, Zhang S, Trigg EB, Agarwal R, Li J, Su D, Murray CB, ACS Nano, 9, 8108 (2015)
- Tessier MD, De Nolf K, Dupont D, Sinnaeve D, De Roo J, Hens Z, J. Am. Chem. Soc., 138(18), 5923 (2016)
- Li H, Jia C, Meng X, Li H, Front. Chem., 6, 6 (2019)
- Cho G, Park Y, Kang H, Hong YK, Lee T, Ha DH, Appl. Surf. Sci., 510, 145427 (2020)
- Ryu J, Jung N, Jang JH, Kim HJ, Yoo SJ, ACS Catal., 5, 4066 (2015)
- Callejas JF, Read CG, Popczun EJ, McEnaney JM, Schaak RE, Chem. Mater., 27, 3769 (2015)
- Laursen AB, Patraju KR, Whitaker MJ, Retuerto M, Sarkar T, Yao N, Dismukes GC, Energy Environ. Sci., 8, 1027 (2015)
- Hou M, Teng X, Wang J, Liu Y, Guo L, Ji L, Chen Z, Nanoscale, 10, 14594 (2018)
- Dury F, Gaigneaux EM, Catal. Today, 117(1-3), 46 (2006)
- Kibsgaard J, Jaramillo TF, Angew. Chem.-Int. Edit., 53, 14433 (2014)
- Deng C, Ding F, Li X, Guo Y, Ni W, Yan H, Yan YM, J. Mater. Chem. A, 4, 59 (2016)
- Anjum MAR, Lee JS, ACS Catal., 7, 3030 (2017)