Applied Chemistry for Engineering, Vol.31, No.4, 438-442, August, 2020
무해화된 폐석면에 함유된 유가금속 회수 기술 개발
Development of Technology for Recovering Valuable Metals in Detoxified Waste Asbestos-Containing Waste
E-mail:
초록
Calcium silicate, larnite, merwinite, akermanite 로 구성된 무해화된 폐석면으로부터 화학적 처리를 통한 유가금속 회수를 위한 성분별 회수 조건, 유가금속 회수 공정 최적화 등에 대한 연구를 수행하였다. DACW (detoxified asbestos-containing waste)의 주성분인 Si, Ca, Mg을 SiO2, CaSO4, Mg(OH)2 화합물 형태로 분리, 회수하였다. 분리된 각 성분은 XRD 및 ICP 분석을 통하여 확인하였다. 성분별 회수 조건은 산을 처리하여 SiO2를 우선 분리하고 연속해서 H2SO4 처리하여 Ca는 황산염인 CaSO4 형태로 회수하였다. 남은 Mg는 강염기 조건에서 Mg(OH)2로 침전시켜 회수하였다. 본 연구는 지정 폐기물인 폐석면을 무해화하여 구성 성분을 회수 하여 매립에 의한 석면 폐기물의 기존 처리 과정을 자원 순환형 녹색 기술로의 전환이 가능함을 제시하였다.
Studies on the recovery conditions and optimization process for valuable metal recovery through chemical treatment from detoxified asbestos-containing waste composed of calcium silicate, larnite, merwinite, and akermanite were conducted. The main components, Si, Ca, and Mg, of detoxified asbestos-containing waste (DACW) were separated and recovered in the form of SiO2, CaSO4, and Mg(OH)2 compounds, respectively. Each separated component was confirmed through X-ray diffraction (XRD) and inductively coupled plasma spectrometer (ICP) analysis. The recovery conditions for each component were first treating them with an acid to separate SiO2 and subsequently with H2SO4 to recover Ca in the form of sulfate, CaSO4. The remaining Mg was recovered by precipitation with Mg(OH)2 under strong basic conditions. This study suggested that it is possible to convert existing treatment process of asbestos waste by landfill through recovering the components into a resource-recycling green technology.
- (a) Leonelli C, Veronesi P, Boccaccini DN, J. Hazard. Mater., 135, 149 (2006); (b) Skinner HCW, Indoor Built Environ., 12, 385 (2003).
- (a) Donaldson K, Tran CL, Mutat. Res. Fundam. Mol. Mech. Mutagen, 553, 5 (2004); (b) Kusiorowski R, Zaremba T, Piotrowski J, J. Therm. Anal. Calorim., 109, 693 (2012).
- Gualtieri AF, Tartaglia A, J. European Ceram. Soc., 20, 1409 (2000)
- (a) Wagner JC, Sleggs CA, Marchand P, Occup. Environ. Med., 17, 260 (1960); (b) Newhouse ML, Thompson H, Occup. Environ. Med., 22, 261 (1965); (c) Selikoff IJ, Hammond EC, Am. J. Public Health Nations Health, 58, 1658 (1968).
- Park JI, Yoon CS, Paik NW, J. Korean Soc. Occup. Environ. Hyg., 5, 16 (1995)
- Kim YC, Son BH, Park WM, Hong WH, JAIK., 27, 253 (2011)
- Kang D, Korean. J. Environ. Health Sci., 35(2), 71 (2009)
- (a) Turci F, Colonna M, Tomatis M, J. Toxicol. Environ. Health, Part A, 73(5-6), 368 (2010); (b) Werner AJ, Hochella MF, Guthrie GD, Am. Mineral., 80(11-12), 1093 (1995); (c) Block J, Petrakis L, Dolhert LE, Environ. Sci. Technol, 34(11), 2293 (2000).
- (a) Hong MH, Joo SY, Kim S, Lee CH, Kim DW. Yoon JH, J. Mater. Cycles and Waste Manag., 22, 826 (2020); (b) Hong MH, Choi HM, Joo SY, Lee CG, Yoon JH, J. Korean Inst. Resour. Recycl., 29(1), 35 (2020).
- Gualtieri AF, Cavenati C, Zanatto I, Meloni M, Elmi G, Gualtieri ML, J. Hazard. Mater., 152(2), 563 (2008)
- (a) Lee YH, Lee SH, Hwang IH, Choi SY, Lee SM, Kim SS, Appl. Chem. Eng., 29(1), 43 (2018); (b) Lee YH, Kim J, Kim SS, Appl. Chem. Eng., 31(1), 103 (2020).