Advanced Powder Technology, Vol.31, No.5, 2061-2071, 2020
Synthesis and characterization maleate-alumoxane nanoparticles for removal of reactive yellow 84 dye from aqueous solution
Maleate-alumoxane nanoparticles (Mal-A) were synthesized from boehmite and applied for adsorption of an azo dye (Reactive Yellow 84) from aqueous solution. Its adsorption capacity was compared with three types of carboxylate alumoxane nanoparticles synthesized from boehmite including salicylate alumoxane (Sal-A), para-aminobenzoate alumoxane (Pab-A) and fumarate alumoxane (Fum-A). The characterizations of prepared materials were analyzed using FTIR, SEM, X-ray diffraction and BET measurements. Among utilized alumoxanes at natural pH, the adsorption capacity of Mal-A was 45, 67, 116 and 215% higher than that of Fum-A, Boehmite, Pab-A, Sal-A nanoparticles, respectively. Response surface methodology (RSM) using Box-Behnken design of experiment was employed to investigate the influence of pH, initial concentration of dye and adsorbent dosage on dye removal efficiency of Mal-A. Box-cox transformation was chosen to improve model adequately and a good prediction (R-2: 0.998) was achieved. Under optimum condition, i.e., pH: 4.3, dye concentration: 151.5 mg/L and adsorbent dosage: 1.2 g/L, the adsorption capacity and dye removal efficiency were obtained 130.6 mg/g and 99.2%, respectively. The kinetics and equilibrium data were perfectly represented with linear pseudo-second-order and linear Langmuir isotherm models, respectively. (C) 2020 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder Technology Japan. All rights reserved.