Biochemical and Biophysical Research Communications, Vol.528, No.3, 473-477, 2020
Adaptations in chloroplast membrane lipid synthesis from synthesis in ancestral cyanobacterial endosymbionts
Cyanobacteria and chloroplasts are believed to share a common ancestor, but synthetic pathways for membrane lipids are different. Lyso-phosphatidic acid (lyso-PA) is the precursor for the synthesis of all membrane lipids and synthesized by an acyl-ACP dependent glycerol-3-phosphate acyltransferase (GPAT) in chloroplasts. In cyanobacteria, GPAT genes are not found and, instead, genes coding for enzymes in the acyl-phosphate dependent lyso-PA synthetic pathway (plsX and plsY) are conserved. We report that the PlsX/Y dependent lyso-PA synthetic pathway is essential in cyanobacteria, but can be replaced by acyl-ACP dependent GPAT from Escherichia coli (plsB) and Arabidopsis thaliana (ATS1). Cyanobacteria thus display the capacity to accept enzymes from other organisms to synthesize essential components. This ability may have enabled them to evolve into current chloroplasts from their ancestral origins. (C) 2020 Elsevier Inc. All rights reserved.