화학공학소재연구정보센터
Catalysis Today, Vol.348, 290-298, 2020
NiCo2O4/graphene quantum dots (GQDs) for use in e fficient electrochemical energy devices: An electrochemical and X-ray absorption spectroscopic investigation
NiCo2O4/graphene quantum dots (GQDs) were synthesized by the incorporation of GQDs into NiCo2O4 as electrode materials for use in electrochemical energy devices. The electronic structure and the electrochemical performance of NiCo2O4/GQDs were investigated by X-ray absorption spectroscopy (XAS) and electrochemical measurements. The rich redox active sites were revealed on the NiCo2O4/GQDs, which were formed by the strong CeOeNi/Co interaction between NiCo2O4 and GQDs. The synergetic double-layer capacitive and pseudocapacitive properties were suggested to provide favorable electrochemical characteristics. In/ex situ XAS elucidates local electronic and chemical environments and provides insights into the energy storage/conversion mechanisms. Analytical results demonstrate that the NiCo2O4/GQDs have strong oxygen-carbon bridges and have more Ni active sites than does NiCo2O4, favoring metal-to-ligand charge transfer at the interface between NiCo2O4 and GQDs, critically influencing electrochemical performance. This work contributes importantly to the field by elucidating an energy storage/conversion mechanism for electrochemical energy devices.